معرفی شرکت ها


dgpsi-2.1b0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Deep and Linked Gaussian Process Emulations using Stochastic Imputation
ویژگی مقدار
سیستم عامل -
نام فایل dgpsi-2.1b0
نام dgpsi
نسخه کتابخانه 2.1b0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Deyu Ming
ایمیل نویسنده deyu.ming.16@ucl.ac.uk
آدرس صفحه اصلی https://github.com/mingdeyu/DGP
آدرس اینترنتی https://pypi.org/project/dgpsi/
مجوز MIT
# dgpsi [![GitHub release (latest by date including pre-releases)](https://img.shields.io/github/v/release/mingdeyu/DGP?display_name=release&include_prereleases&style=flat-square)](https://github.com/mingdeyu/DGP/releases) [![Read the Docs (version)](https://img.shields.io/readthedocs/dgpsi/latest?style=flat-square)](https://dgpsi.readthedocs.io) [![Conda](https://img.shields.io/conda/dn/conda-forge/dgpsi?label=Conda%20Downloads&style=flat-square)](https://anaconda.org/conda-forge/dgpsi) ![Conda](https://img.shields.io/conda/pn/conda-forge/dgpsi?color=orange&style=flat-square) [![REF](https://img.shields.io/badge/DOC-Linked%20GP-informational)](https://epubs.siam.org/doi/abs/10.1137/20M1323771) [![REF](https://img.shields.io/badge/DOC-Deep%20GP-informational)](https://doi.org/10.1080/00401706.2022.2124311) [![GitHub R package version](https://img.shields.io/github/r-package/v/mingdeyu/dgpsi-R)](https://github.com/mingdeyu/dgpsi-R) ## For R users The `R` interface to the package is available at [`dgpsi-R`](https://github.com/mingdeyu/dgpsi-R). ## A Python package for deep and linked Gaussian process emulations `dgpsi` currently implements: * Deep Gaussian process emulation with flexible architecture construction: - multiple layers; - multiple GP nodes; - separable or non-separable squared exponential and Mat&eacute;rn2.5 kernels; - global input connections; - non-Gaussian likelihoods (Poisson, Negative-Binomial, heteroskedastic Gaussian, and more to come); * Linked emulation of feed-forward systems of computer models: - linking GP emulators of deterministic individual computer models; - linking GP and DGP emulators of deterministic individual computer models; * Multi-core predictions from GP, DGP, and Linked (D)GP emulators; * Fast Leave-One-Out (LOO) cross validations for GP and DGP emulators. * Calculations of ALM, MICE, and PEI sequential design criterions. ## Installation `dgpsi` currently requires Python version 3.7, 3.8, or 3.9. The package can be installed via `pip`: ```bash pip install dgpsi ``` or `conda`: ```bash conda install -c conda-forge dgpsi ``` However, to gain the best performance of the package or you are using an Apple Silicon computer, we recommend the following steps for the installation: * Download and install `Miniforge3` that is compatible to your system from [here](https://github.com/conda-forge/miniforge). * Run the following command in your terminal app to create a virtual environment called `dgp_si`: ```bash conda create -n dgp_si python=3.9.13 ``` * Activate and enter the virtual environment: ```bash conda activate dgp_si ``` * Install `dgpsi`: - for Apple Silicon users, you could gain speed-up by switching to Apple's Accelerate framework: ```bash conda install dgpsi "libblas=*=*accelerate" ``` - for Intel users, you could gain speed-up by switching to MKL: ```bash conda install dgpsi "libblas=*=*mkl" ``` - otherwise, simply run: ```bash conda install dgpsi ``` ## Demo and documentation Please see [demo](https://github.com/mingdeyu/DGP/tree/master/demo) for some illustrative examples of the method. The API reference of the package can be accessed from [https://dgpsi.readthedocs.io](https://dgpsi.readthedocs.io), and some tutorials will be soon added there. ## Tips * Since SI is a stochastic inference, in case of unsatisfactory results, you may want to try to restart the training multiple times even with initial values of hyperparameters unchanged; * The recommended DGP structure is a two-layered one with the number of GP nodes in the first layer equal to the number of input dimensions (i.e., number of input columns) and the number of GP nodes in the second layer equal to the number of output dimensions (i.e., number of output columns) or the number of parameters in the specified likelihood. The `dgp` class in the package is default to this structure. ## Contact Please feel free to email me with any questions and feedbacks: Deyu Ming <[deyu.ming.16@ucl.ac.uk](mailto:deyu.ming.16@ucl.ac.uk)>. ## References > [Ming, D., Williamson, D., and Guillas, S. (2022) Deep Gaussian process emulation using stochastic imputation. <i>Technometrics</i>. 0(0), 1-12.](https://doi.org/10.1080/00401706.2022.2124311) > [Ming, D. and Guillas, S. (2021) Linked Gaussian process emulation for systems of computer models using Mat&eacute;rn kernels and adaptive design, <i>SIAM/ASA Journal on Uncertainty Quantification</i>. 9(4), 1615-1642.](https://epubs.siam.org/doi/abs/10.1137/20M1323771)


نیازمندی

مقدار نام
>=1.18.2 numpy
>=0.51.2 numba
>=3.2.1 matplotlib
>=4.50.2 tqdm
>=1.4.1 scipy
>=0.22.0 scikit-learn
>=1.0.0 jupyter
>=0.3.2 dill
>=0.2.9 pathos
>=5.8.0 psutil
>=0.29.30 cython
>=2.10.0 pybind11
>=0.11.0 pythran
>=0.15.0 scikit-build
>=0.8.7 tabulate
- jupyter


زبان مورد نیاز

مقدار نام
>=3.7, <4 Python


نحوه نصب


نصب پکیج whl dgpsi-2.1b0:

    pip install dgpsi-2.1b0.whl


نصب پکیج tar.gz dgpsi-2.1b0:

    pip install dgpsi-2.1b0.tar.gz