معرفی شرکت ها


dgc-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An accompanying package for the paper, Deep Goal-Oriented Clustering
ویژگی مقدار
سیستم عامل -
نام فایل dgc-0.1.3
نام dgc
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yifeng Shi
ایمیل نویسنده yifengs@cs.unc.edu
آدرس صفحه اصلی https://github.com/uncbiag/dgc
آدرس اینترنتی https://pypi.org/project/dgc/
مجوز UNC
# Deep Goal-Oriented Clustering This is the depository for the paper, Deep Goal-Oriented Clustering (DGC). This depository contains code to replicate the CIFAR 100-20 experiment detailed in the paper. Here we give a brief description of DGC. DGC is built upon VAE, and uses similar variational techniques to maximize a variation lower bound of the data log-likelihood. A (deep) variational method can be efficiently summarized in terms of its generative & infernece steps, which we describe next. ## Generative process for DGC Let x,y,z and c denote the input data, the side-information, the latent code, and the index for a given Gaussian mixture component, we then have p(x,y,z,c) = p(y|z,c)p(x|z)p(z|c)p(c) In words, we first sample a component index from p(c), sample the latent code z from p(z|c), and then we reconstruct the input x and predict for the side-information y (see the figure below for a figurative illustration). ![](https://github.com/uncbiag/dgc/blob/main/bayesian_net.png?raw=true|width=20) ## Inference for DGC For the variational lower bound of DGC, please refer to Eq. 2 in the main paper. In a nutshell, we want to maximize the log-likelihood by maximizing its variational lower bound. ## Test the model on Pacman To run the model on the Pacman dataset, first install the package ```shell pip install dgc ``` After the installation, simply follow the following ```python # Test model on the sythetic dataset Pacman from dgc import load_sample_datasets from dgc import dgc dataset = 'pacman' task_name = 'regression' batch_size = 128 learning_rate = 0.01 epochs = 50 trainloader, testloader, _ = load_sample_datasets(batch_size,dataset) model = dgc(input_dim=2, y_dim = 1, z_dim=10, n_centroids=2, task = task_name, binary=True, encodeLayer=[128,256,256], decodeLayer=[256,256,128]) model.fit(trainloader, testloader, lr=learning_rate, num_epochs=epochs, anneal=True, direct_predict_prob=False) ``` ## Test the model on your dataset To run DGC on your own dataset, you will need to have the following files (all of which are assumed to be numpy arrays) 1. **train_features.npy**: this contains the training features 2. **train_side_info.npy**: this contains the training side-information (can be either discrete or continous) 3. **train_cluster_labels.npy**: this contains the training clustering labels 4. **test_features.npy**: this contains the test features 5. **test_side_info.npy**: this contains the test side-information (can be either discrete or continous) 6. **test_cluster_labels.npy**: this contains the test clustering labels You can create your own dataloader or passing the files into the built-in loader function ```python from dgc import form_dataloaders from dgc import dgc batch_size = 128 # whatever you want task_name = 'regression' # or classification batch_size = 128 learning_rate = 0.01 epochs = 50 input_dim = 2 y_dim = 1, z_dim = 10, n_centroids = 10 binary = True encoder_size = [128,256,256] decoder_size = [256,256,128] learning_rate = 0.01 num_epochs = 10 anneal = True direct_predict_prob = False save_model_path = './sample_model.pt' train_data = [train_features,train_side_info,train_cluster_labels] # order matters here test_data = [test_features,test_side_info,test_cluster_labels] trainloader,testloader,_ = form_dataloaders(batch_size,train_data,test_data) model = dgc(input_dim=input_dim, y_dim = y_dim, z_dim=z_dim, n_centroids=n_centroids, task = task_name, binary=binary, encodeLayer=encoder_size, decodeLayer=decoder_size) model.fit(trainloader, testloader, lr=learning_rate, num_epochs=epochs anneal=anneal, direct_predict_prob=direct_predict_prob) # If you want to save the model model.save_model(save_model_path) ```


نیازمندی

مقدار نام
- numpy
- torch
- matplotlib


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl dgc-0.1.3:

    pip install dgc-0.1.3.whl


نصب پکیج tar.gz dgc-0.1.3:

    pip install dgc-0.1.3.tar.gz