معرفی شرکت ها


dftfit-0.5.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Ab-Initio Molecular Dynamics Potential Development
ویژگی مقدار
سیستم عامل -
نام فایل dftfit-0.5.1
نام dftfit
نسخه کتابخانه 0.5.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Chris Ostrouchov
ایمیل نویسنده chris.ostrouchov+dftfit@gmail.com
آدرس صفحه اصلی https://github.com/costrouc/dftfit
آدرس اینترنتی https://pypi.org/project/dftfit/
مجوز MIT
# DFTFIT DFTFIT is a python code that used Ab Initio data from DFT calculations such as VASP, Quantum Espresso, and Siesta to develop molecular dynamic potentials. Our package differs from other similar codes in that we leverage LAMMPS as a calculator enabling a wide variety of [potentials](https://chrisostrouchov/dftfit/potentials.html). The potentials include custom python functions and a wide variety or three-body interactions including the Tersoff, Stillinger-Weber, Gao-Weber, Vashishta, and COMB Potentials. All of which can be combined to have for example a Buckingham + Coulomb + ZBL potential. We also have an extensive set of multi-objective and single-objective [optimizers](https://chrisostrouchov/dftfit/configuration.html#optimization)that can evaluate a potential for many properties including energy, forces, stress, lattice constants, elastic constants, bulk modulus, and shear modulus. In general three things are required from the user. - [Ab-Initio Training Data](https://chrisostrouchov/dftfit/training.html) includes VASP, Siesta, and Quantum Espresso Calculations. Additionally the user may supply measured properties such as lattice constants, elastic constants, bulk modulus, and shear modulus. - [configuration](https://chrisostrouchov/dftfit/configuration.html): specifies optimization algorithm and number of steps, sqlite database to store results, and MD calculator to use. - [Potential](https://chrisostrouchov/dftfit/potentials.html) among a rich set of two and three body potentials. Including a custom python function. <table> <tr> <td>Latest Release</td> <td><img src="https://img.shields.io/pypi/v/dftfit.svg" alt="latest release"/></td> </tr> <tr> <td>Package Status</td> <td><img src="https://img.shields.io/pypi/status/dftfit.svg" alt="status" /></td> </tr> <tr> <td>License</td> <td><img src="https://img.shields.io/pypi/l/dftfit.svg" alt="license" /></td> </tr> <tr> <td>Build Status</td> <td> <a href="https://travis-ci.org/costrouc/dftfit"> <img src="https://api.travis-ci.org/costrouc/dftfit.svg?branch=master" alt="travis ci pipeline status" /> </a> </td> </tr> <tr> <td>Documentation</td> <td><a href="https://chrisostrouchov.com/dftfit/">documentation</a> </td> </tr> </table> ## Presentations: - [HTCMC 2016](https://speakerdeck.com/costrouc/dftfit-potential-generation-for-molecular-dynamics-calculations#) - [MRS 2017](https://speakerdeck.com/costrouc/dftfit-potential-generation-for-molecular-dynamics-calculations#) ## Potentials Any combination of the following potentials is a valid potential in DFTFIT. Two-Body Potentials - custom python function - ZBL - Buckingham - Beck - coulombic interaction - Lennard Jones Three-Body Potentials - Tersoff - Stillinger Weber - Gao Weber - Vashishta - COMB/COMB3 ## Measured Properties - energy - stress - forces - lattice constants (lengths) - elastic constants (voigt) - bulk modulus - shear modulus ## Algorithm We use generalized least squares method for finding the optimal parameters for a proposed potential. DFTFIT integrates with existing MD software as a potential calculator. Currently only [LAMMPS](http://lammps.sandia.gov/doc/Manual.html) is supported. This means the user has the freedom to use any of the potentials available in LAMMPS. Our algorithm follows a [highly cited publication](http://dx.doi.org/10.1063/1.1513312) that proposes a method for determining a new potential for Silicon using the force matching of DFT calcultions. ![Optimization Equation](https://github.com/costrouc/dftfit/raw/master/docs/images/equations.png) ### Parameters - n_c: number of system configurations - N number of atoms in each configuration - α, β: tensor with 3D dimensions [x, y, z] - cl: classical results from molecular dynamics potential - ai: ab initio results from dft simulation - w_f, w_s, w_e: weights to assign respectively for force, stress, energy - F, S, E: force, stress, and energy respectively. Dependencies ------------ - MD Calculator: [LAMMPS](http://lammps.sandia.gov/) - [pymatgen_lammps (run as command)](https://github.com/costrouc/pymatgen-lammps) - [lammps-cython (python interface)](https://github.com/costrouc/lammps-cython) - [pagmo2](https://github.com/esa/pagmo2) - [pymatgen](https://github.com/materialsproject/pymatgen/) - Ab Initio data from either [VASP](https://www.vasp.at/) or [Quantum Espresso](http://www.quantum-espresso.org/) # Installation For `pypi` installation. Note that installation of `lammps-cython` may fail and is required. You will need to install ``LAMMPS`` as documented [here](https://chrisostrouchov.com/lammps-cython/installation.html#pip). You may have to do `pip install numpy cython`. ```bash pip install dftfit ``` For `conda` installation ```bash conda install -c costrouc -c matsci -c conda-forge dftfit ``` For `docker` installation ```bash docker pull costrouc/dftfit ``` # Documentation The official documentation is hosted on github pages: https://chrisostrouchov.com/dftfit/ # Running DFTFIT provides a [command line interface](https://chrisostrouchov.com/dftfit/commands.html). Of course the package can be used as a standard python package. # Tutorial and Documentation - [MgO tutorial](https://chrisostrouchov.com/dftfit/tutorial.html) - [Documentation](https://chrisostrouchov.com/dftfit/index.html) # Contributing All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. These should be submitted at the [Github repository](https://github.com/costrouc/dftfit). # License [MIT](https://github.com/costrouc/dftfit/blob/master/LICENSE.md)


نحوه نصب


نصب پکیج whl dftfit-0.5.1:

    pip install dftfit-0.5.1.whl


نصب پکیج tar.gz dftfit-0.5.1:

    pip install dftfit-0.5.1.tar.gz