معرفی شرکت ها


dframcy-0.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Pandas Dataframe integration for spaCy
ویژگی مقدار
سیستم عامل -
نام فایل dframcy-0.1.6
نام dframcy
نسخه کتابخانه 0.1.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yash Patadia
ایمیل نویسنده yash@patadia.org
آدرس صفحه اصلی https://github.com/yash1994/dframcy
آدرس اینترنتی https://pypi.org/project/dframcy/
مجوز -
# DframCy [![Package Version](https://img.shields.io/pypi/v/dframcy.svg?&service=github)](https://pypi.python.org/pypi/dframcy/) [![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/) [![Build Status](https://travis-ci.org/yash1994/dframcy.svg?branch=master)](https://travis-ci.org/yash1994/dframcy) [![codecov](https://codecov.io/gh/yash1994/dframcy/branch/master/graph/badge.svg)](https://codecov.io/gh/yash1994/dframcy) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black) DframCy is a light-weight utility module to integrate Pandas Dataframe to spaCy's linguistic annotation and training tasks. DframCy provides clean APIs to convert spaCy's linguistic annotations, Matcher and PhraseMatcher information to Pandas dataframe, also supports training and evaluation of NLP pipeline from CSV/XLXS/XLS without any changes to spaCy's underlying APIs. ## Getting Started DframCy can be easily installed. Just need to the following: ### Requirements * Python 3.6 or later * Pandas * spaCy >= 3.0.0 Also need to download spaCy's language model: ```bash python -m spacy download en_core_web_sm ``` For more information refer to: [Models & Languages](https://spacy.io/usage/models) ### Installation: This package can be installed from [PyPi](https://pypi.org/project/dframcy/) by running: ```bash pip install dframcy ``` To build from source: ```bash git clone https://github.com/yash1994/dframcy.git cd dframcy python setup.py install ``` ## Usage ### Linguistic Annotations Get linguistic annotation in the dataframe. For linguistic annotations (dataframe column names) refer to [spaCy's Token API](https://spacy.io/api/token) document. ```python import spacy from dframcy import DframCy nlp = spacy.load("en_core_web_sm") dframcy = DframCy(nlp) doc = dframcy.nlp(u"Apple is looking at buying U.K. startup for $1 billion") # default columns: ["id", "text", "start", "end", "pos_", "tag_", "dep_", "head", "ent_type_"] annotation_dataframe = dframcy.to_dataframe(doc) # can also pass columns names (spaCy's linguistic annotation attributes) annotation_dataframe = dframcy.to_dataframe(doc, columns=["text", "lemma_", "lower_", "is_punct"]) # for separate entity dataframe token_annotation_dataframe, entity_dataframe = dframcy.to_dataframe(doc, separate_entity_dframe=True) # custom attributes can also be included from spacy.tokens import Token fruit_getter = lambda token: token.text in ("apple", "pear", "banana") Token.set_extension("is_fruit", getter=fruit_getter) doc = dframcy.nlp(u"I have an apple") annotation_dataframe = dframcy.to_dataframe(doc, custom_attributes=["is_fruit"]) ``` ### Rule-Based Matching ```python # Token-based Matching import spacy nlp = spacy.load("en_core_web_sm") from dframcy.matcher import DframCyMatcher, DframCyPhraseMatcher, DframCyDependencyMatcher dframcy_matcher = DframCyMatcher(nlp) pattern = [{"LOWER": "hello"}, {"IS_PUNCT": True}, {"LOWER": "world"}] dframcy_matcher.add("HelloWorld", None, pattern) doc = dframcy_matcher.nlp("Hello, world! Hello world!") matches_dataframe = dframcy_matcher(doc) # Phrase Matching dframcy_phrase_matcher = DframCyPhraseMatcher(nlp) terms = [u"Barack Obama", u"Angela Merkel",u"Washington, D.C."] patterns = [dframcy_phrase_matcher.get_nlp().make_doc(text) for text in terms] dframcy_phrase_matcher.add("TerminologyList", None, *patterns) doc = dframcy_phrase_matcher.nlp(u"German Chancellor Angela Merkel and US President Barack Obama " u"converse in the Oval Office inside the White House in Washington, D.C.") phrase_matches_dataframe = dframcy_phrase_matcher(doc) # Dependency Matching dframcy_dependency_matcher = DframCyDependencyMatcher(nlp) pattern = [{"RIGHT_ID": "founded_id", "RIGHT_ATTRS": {"ORTH": "founded"}}] doc = dframcy_dependency_matcher.nlp(u"Bill Gates founded Microsoft. And Elon Musk founded SpaceX") dependency_matches_dataframe = dframcy_dependency_matcher(doc) ``` ### Command Line Interface Dframcy supports command-line arguments for the conversion of a plain text file to linguistically annotated text in CSV/JSON format. Previous versions of Dframcy were used to support CLI utilities for training and evaluation of spaCy models from CSV/XLS files. After the [v3](https://spacy.io/usage/v3) release, spaCy's training pipeline has become much more flexible and robust so didn't want to introduce additional step using Dframcy for just format conversion (CSV/XLS to [spaCy’s binary format](https://spacy.io/api/data-formats#binary-training)). ```bash # convert dframcy dframe -i plain_text.txt -o annotations.csv -f csv ```


نیازمندی

مقدار نام
- click
- pandas
- pytest
- pytest-cov
>=3.0.0 spacy
- tox
- tox-travis
- wasabi
- xlrd


نحوه نصب


نصب پکیج whl dframcy-0.1.6:

    pip install dframcy-0.1.6.whl


نصب پکیج tar.gz dframcy-0.1.6:

    pip install dframcy-0.1.6.tar.gz