معرفی شرکت ها


dfbgn-0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A derivative-free solver for large-scale nonlinear least-squares minimization
ویژگی مقدار
سیستم عامل -
نام فایل dfbgn-0.1
نام dfbgn
نسخه کتابخانه 0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lindon Roberts
ایمیل نویسنده lindon.roberts@anu.edu.au
آدرس صفحه اصلی https://github.com/numericalalgorithmsgroup/dfbgn/
آدرس اینترنتی https://pypi.org/project/dfbgn/
مجوز GNU GPL
========================================= DFBGN: Derivative-Free Block Gauss-Newton ========================================= .. image:: https://travis-ci.org/numericalalgorithmsgroup/dfbgn.svg?branch=master :target: https://travis-ci.org/numericalalgorithmsgroup/dfbgn :alt: Build Status .. image:: https://img.shields.io/badge/License-GPL%20v3-blue.svg :target: https://www.gnu.org/licenses/gpl-3.0 :alt: GNU GPL v3 License DFBGN is a Python package for nonlinear least-squares minimization, where derivatives are not available. It is particularly useful when evaluations of the objective are expensive and/or noisy, and the number of variables to be optimized is large. DFBGN is based on `DFO-LS <https://github.com/numericalalgorithmsgroup/dfols>`_, but is better-suited when there are many variables to be optimized (so the linear algebra in DFO-LS is too slow). Unlike DFO-LS, DFBGN does not currently support bound constraints on the variables. If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_. Requirements ------------ DFBGN requires the following software to be installed: * Python 2.7 or Python 3 (http://www.python.org/) Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_): * NumPy 1.11 or higher (http://www.numpy.org/) * SciPy 0.18 or higher (http://www.scipy.org/) * Pandas 0.17 or higher (http://pandas.pydata.org/) Installation using pip ---------------------- For easy installation, use `pip <http://www.pip-installer.org/>`_ as root: .. code-block:: bash $ [sudo] pip install dfbgn or alternatively *easy_install*: .. code-block:: bash $ [sudo] easy_install dfbgn If you do not have root privileges or you want to install DFBGN for your private use, you can use: .. code-block:: bash $ pip install --user dfbgn which will install DFBGN in your home directory. Note that if an older install of DFBGN is present on your system you can use: .. code-block:: bash $ [sudo] pip install --upgrade dfbgn to upgrade DFBGN to the latest version. Manual installation ------------------- Alternatively, you can download the source code from `Github <https://github.com/numericalalgorithmsgroup/dfbgn>`_ and unpack as follows: .. code-block:: bash $ git clone https://github.com/numericalalgorithmsgroup/dfbgn $ cd dfbgn DFBGN is written in pure Python and requires no compilation. It can be installed using: .. code-block:: bash $ [sudo] pip install . If you do not have root privileges or you want to install DFBGN for your private use, you can use: .. code-block:: bash $ pip install --user . instead. To upgrade DFBGN to the latest version, navigate to the top-level directory (i.e. the one containing :code:`setup.py`) and rerun the installation using :code:`pip`, as above: .. code-block:: bash $ git pull $ [sudo] pip install . # with admin privileges Testing ------- If you installed DFBGN manually, you can test your installation by running: .. code-block:: bash $ python setup.py test Alternatively, the HTML documentation provides some simple examples of how to run DFBGN. Examples -------- Examples of how to run DFBGN are given in the `documentation <https://numericalalgorithmsgroup.github.io/dfbgn/>`_, and the `examples <https://github.com/numericalalgorithmsgroup/dfbgn/tree/master/examples>`_ directory in Github. Uninstallation -------------- If DFBGN was installed using *pip* you can uninstall as follows: .. code-block:: bash $ [sudo] pip uninstall dfbgn If DFBGN was installed manually you have to remove the installed files by hand (located in your python site-packages directory). Bugs ---- Please report any bugs using GitHub's issue tracker. License ------- This algorithm is released under the GNU GPL license. Please `contact NAG <http://www.nag.com/content/worldwide-contact-information>`_ for alternative licensing.


نحوه نصب


نصب پکیج whl dfbgn-0.1:

    pip install dfbgn-0.1.whl


نصب پکیج tar.gz dfbgn-0.1:

    pip install dfbgn-0.1.tar.gz