معرفی شرکت ها


df-to-azure-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Automatically write pandas DataFrames to SQL by creating pipelines in Azure Data Factory with copy activity from blob to SQL
ویژگی مقدار
سیستم عامل -
نام فایل df-to-azure-0.9.0
نام df-to-azure
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Melvin Folkers, Erfan Nariman
ایمیل نویسنده melvin@zypp.io, erfan@zypp.io
آدرس صفحه اصلی https://github.com/zypp-io/df_to_azure
آدرس اینترنتی https://pypi.org/project/df-to-azure/
مجوز -
<p align="center"> <img alt="logo" src="https://www.zypp.io/static/assets/img/logos/zypp/white/500px.png" width="200"/> </p><br> [![Downloads](https://pepy.tech/badge/df_to_azure)](https://pepy.tech/project/keyvault) [![Open Source](https://badges.frapsoft.com/os/v1/open-source.svg?v=103)](https://opensource.org/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![PyPI](https://img.shields.io/pypi/v/df_to_azure)](https://pypi.org/project/df-to-azure/) [![Latest release](https://badgen.net/github/release/zypp-io/df_to_azure)](https://github.com/zypp-io/df_to_azure/releases) DF to Azure === > Python module for fast upload of pandas DataFrame to Azure SQL Database using automatic created pipelines in Azure Data Factory. ## Introduction The purpose of this project is to upload large datasets using Azure Data Factory combined with an Azure SQL Server. In steps the following process kicks off:<p> 1. The data will be uploaded as a .csv file to Azure Blob storage.<br> 2. A SQL table is prepared based on [pandas DataFrame types](https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#basics-dtypes), which will be converted to the corresponding [SQLAlchemy types](https://docs.sqlalchemy.org/en/14/core/type_basics.html). <br> 3. A pipeline is created in datafactory for uploading the .csv from the Blob storage into the SQL table.<br> 4. The pipeline is triggered, so that the .csv file is bulk inserted into the SQL table.<br> ## How it works Based on the following attributes, it is possible to bulk insert your dataframe into the SQL Database: ```python from df_to_azure import df_to_azure df_to_azure(df=df, tablename="table_name", schema="schema", method="create") ``` 1. `df`: dataframe you wish to export 2. `tablename`: desired name of the table 3. `schema`: desired sql schema 4. `method`: option for "create" "append" or "upsert" 5. `id_field`: id field of the table. Necessary if `method` is set to "upsert" **Important**: the csv's are uploaded to a container called `dftoazure`, so create this in your storage account before using this module. ##### Upsert / create or append It is possible to upsert the SQL table with (new) records, if present in the dataframe you want to upload. Based on the id_field, the SQL table is being checked on overlapping values. If there are new records, the "old" records will be updated in the SQL table. The new records will be uploaded and appended to the current SQL table. # Settings To use this module, you need to add the `azure subscriptions settings` and `azure data factory settings` to your environment variables. We recommend to work with `.env` files (or even better, automatically load them with [Azure Keyvault](https://pypi.org/project/keyvault/)) and load them in during runtime. But this is optional and they can be set as system variables as well. Use the following template when using `.env` ## Parquet Since version 0.6.0, functionality for uploading dataframe to parquet is supported. simply add argument `parquet=True` to upload the dataframe to the Azure storage container parquet. The arguments tablename and schema will be used to create a folder structure. if parquet is set to True, the dataset will not be uploaded to a SQL database. ```text # --- ADF SETTINGS --- # data factory settings rg_name : "" rg_location: "westeurope" df_name : "" # blob settings ls_blob_account_name : "" ls_blob_container_name : "" ls_blob_account_key : "" # SQL settings SQL_SERVER: "" SQL_DB: "" SQL_USER: "" SQL_PW: "" # --- AZURE SETTINGS --- # azure credentials for connecting to azure subscription. client_id : "" secret : "" tenant : "" subscription_id : "" ``` ## Maintained by [Zypp](https://github.com/zypp-io): - [Melvin Folkers](https://github.com/melvinfolkers) - [Erfan Nariman](https://github.com/erfannariman) ## Support: For support on using this module, you can reach us at [hello@zypp.io](mailto:hello@zypp.io) --- ## Testing To run the test suite, use: ```commandline pytest df_to_azure ``` To run pytest for a single test: ```commandline pytest df_to_azure/tests/test_df_to_azure.py::test_duplicate_keys_upsert ```


نیازمندی

مقدار نام
>=1.7.1 azure-identity
<2.7.0,>=2.2.0 azure-mgmt-datafactory
>=20.1.0 azure-mgmt-resource
>=12.8.1 azure-storage-blob
>=1.5.0 pandas
>=7.0.0 pyarrow
>=4.0.32 pyodbc
<2.0.0,>=1.4.31 sqlalchemy


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl df-to-azure-0.9.0:

    pip install df-to-azure-0.9.0.whl


نصب پکیج tar.gz df-to-azure-0.9.0:

    pip install df-to-azure-0.9.0.tar.gz