معرفی شرکت ها


dexterity-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Software and tasks for dexterous multi-fingered hand manipulation, powered by MuJoCo
ویژگی مقدار
سیستم عامل -
نام فایل dexterity-0.0.9
نام dexterity
نسخه کتابخانه 0.0.9
نگهدارنده ['Kevin Zakka']
ایمیل نگهدارنده ['kevinarmandzakka@gmail.com']
نویسنده Kevin Zakka
ایمیل نویسنده kevinarmandzakka@gmail.com
آدرس صفحه اصلی https://github.com/kevinzakka/dexterity
آدرس اینترنتی https://pypi.org/project/dexterity/
مجوز MIT
# The MuJoCo Dexterity Suite (alpha-release) [![PyPI Python Version][pypi-versions-badge]][pypi] [![PyPI version][pypi-badge]][pypi] [![dexterity-tests][tests-badge]][tests] [pypi-versions-badge]: https://img.shields.io/pypi/pyversions/dexterity [pypi-badge]: https://badge.fury.io/py/dexterity.svg [pypi]: https://pypi.org/project/dexterity/ [tests-badge]: https://github.com/kevinzakka/dexterity/actions/workflows/build.yml/badge.svg [tests]: https://github.com/kevinzakka/dexterity/actions/workflows/build.yml Software and tasks for dexterous multi-fingered hand manipulation, powered by [MuJoCo](https://mujoco.org/). <p float="left"> <img src="https://raw.githubusercontent.com/kevinzakka/dexterity/main/assets/reach.png" height="200"> <img src="https://raw.githubusercontent.com/kevinzakka/dexterity/main/assets/cube.png" height="200"> </p> `dexterity` builds on [dm_control](https://github.com/deepmind/dm_control) and provides a collection of modular components that can be used to define rich Reinforcement Learning environments for dexterous manipulation. It also comes with a set of standardized tasks that can serve as a performance benchmark for the research community. An introductory tutorial is available as a Colab notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kevinzakka/dexterity/blob/main/tutorial.ipynb) ## Installation ### PyPI (Recommended) The recommended way to install this package is via [PyPI](https://pypi.org/project/dexterity/): ```bash pip install dexterity ``` ### Source We provide a [Miniconda](https://docs.conda.io/en/latest/miniconda.html) environment with Python 3.8 for development. To create it and install dependencies, run the following steps: ```bash git clone https://github.com/kevinzakka/dexterity cd dexterity conda env create -f environment.yml # Creates a dexterity env. conda activate dexterity pip install . ``` ## Overview The MuJoCo `dexterity` suite is composed of the following core components: * [`models`](dexterity/models/): MuJoCo models for dexterous hands and [PyMJCF](https://github.com/deepmind/dm_control/blob/main/dm_control/mjcf/README.md) classes for dynamically customizing them. * [`inverse_kinematics`](dexterity/inverse_kinematics/): Inverse kinematics library for multi-fingered hands. * [`effectors`](dexterity/effectors/): Interfaces for controlling hands and defining action spaces. These components, in conjunction with `dm_control`, allow you to define and customize rich environments for reinforcement learning. We facilitate this process by providing the following: * [`task`](dexterity/task.py): Wrappers over `composer.Task` that simplify the creation of generic dexterous tasks as well as goal-reaching based tasks (e.g., successive object reorientation). * [`manipulation`](dexterity/manipulation/): A library of pre-defined, benchmark RL environments geared towards dexterous manipulation. For an overview of the available tasks, see the [task library](dexterity/manipulation/README.md). Our hope is to grow the benchmark over time with crowd-sourced contributions from the research community -- PR contributions are welcome! ## Acknowledgements A large part of the design and implementation of `dexterity` is inspired by the [MoMa](https://github.com/deepmind/dm_robotics/tree/main/py/moma) library in [dm_robotics](https://github.com/deepmind/dm_robotics/).


نیازمندی

مقدار نام
- absl-py
- numpy
- typing-extensions
- mujoco
>=1.0.1 dm-control
- dm-robotics-geometry
- dm-robotics-transformations
- black
- isort
- flake8
- mypy
- ipdb
- jupyter
- pytest-xdist
- matplotlib
- imageio
- imageio-ffmpeg
- matplotlib
- imageio
- imageio-ffmpeg
- pytest-xdist


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl dexterity-0.0.9:

    pip install dexterity-0.0.9.whl


نصب پکیج tar.gz dexterity-0.0.9:

    pip install dexterity-0.0.9.tar.gz