معرفی شرکت ها


dewloosh.math-0.0.dev8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A math library for numerical and symboliccalculations.
ویژگی مقدار
سیستم عامل -
نام فایل dewloosh.math-0.0.dev8
نام dewloosh.math
نسخه کتابخانه 0.0.dev8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده dewloosh
ایمیل نویسنده dewloosh@gmail.com
آدرس صفحه اصلی https://github.com/dewloosh/dewloosh-math
آدرس اینترنتی https://pypi.org/project/dewloosh.math/
مجوز -
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/dewloosh/dewloosh-core/main?labpath=examples%2Flpp.ipynb?urlpath=lab) [![CircleCI](https://circleci.com/gh/dewloosh/dewloosh-math.svg?style=shield)](https://circleci.com/gh/dewloosh/dewloosh-math) [![Documentation Status](https://readthedocs.org/projects/dewloosh-math/badge/?version=latest)](https://nddict.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PyPI](https://badge.fury.io/py/dewloosh.math.svg)](https://pypi.org/project/dewloosh.math) # **dewloosh.math** > **Warning** > This package is under active development and in an **beta stage**. Come back later, or star the repo to make sure you don’t miss the first stable release! `dewloosh.math` is a rapid prototyping platform focused on numerical calculations mainly corcerned with simulations of natural phenomena. It provides a set of common functionalities and interfaces with a number of state-of-the-art open source packages to combine their power seamlessly under a single development environment. The most important features: * Numba-jitted classes and an extendible factory to define and manipulate vectors and tensors. * Classes to define and solve linear and nonlinear optimization problems. * A set of array routines for fast prorotyping, including random data creation to assure well posedness, or other properties of test problems. ## **Documentation** Click [here](https://dewloosh-math.readthedocs.io/en/latest/) to read the documentation. ## **Installation** This is optional, but we suggest you to create a dedicated virtual enviroment at all times to avoid conflicts with your other projects. Create a folder, open a command shell in that folder and use the following command ```console >>> python -m venv venv_name ``` Once the enviroment is created, activate it via typing ```console >>> .\venv_name\Scripts\activate ``` `dewloosh.math` can be installed (either in a virtual enviroment or globally) from PyPI using `pip` on Python >= 3.6: ```console >>> pip install dewloosh.math ``` ## **Crash Course** ### Linear Algebra Define a reference frame (B) relative to the ambient frame (A): ```python >>> from dewloosh.math.linalg import ReferenceFrame >>> A = ReferenceFrame(name='A', axes=np.eye(3)) >>> B = A.orient_new('Body', [0, 0, 90*np.pi/180], 'XYZ', name='B') ``` Get the DCM matrix of the transformation between two frames: ```python >>> B.dcm(target=A) ``` Define a vector in frame A and view the components of it in frame B: ```python >>> v = Vector([0.0, 1.0, 0.0], frame=A) >>> v.view(B) ``` Define the same vector in frame B: ```python >>> v = Vector(v.show(B), frame=B) >>> v.show(A) ``` ### Linear Programming Solve a following Linear Programming Problem (LPP) with one unique solution: ```python >>> from dewloosh.math.optimize import LinearProgrammingProblem as LPP >>> import sympy as sy >>> variables = ['x1', 'x2', 'x3', 'x4'] >>> x1, x2, x3, x4 = syms = sy.symbols(variables, positive=True) >>> obj1 = Function(3*x1 + 9*x3 + x2 + x4, variables=syms) >>> eq11 = Equality(x1 + 2*x3 + x4 - 4, variables=syms) >>> eq12 = Equality(x2 + x3 - x4 - 2, variables=syms) >>> problem = LPP(cost=obj1, constraints=[eq11, eq12], variables=syms) >>> problem.solve()['x'] array([0., 6., 0., 4.]) ``` ### NonLinear Programming Find the minimizer of the Rosenbrock function: ```python >>> from dewloosh.math.optimize import BinaryGeneticAlgorithm >>> def Rosenbrock(x, y): >>> a = 1, b = 100 >>> return (a-x)**2 + b*(y-x**2)**2 >>> ranges = [[-10, 10],[-10, 10]] >>> BGA = BinaryGeneticAlgorithm(Rosenbrock, ranges, length=12, nPop=200) >>> BGA.solve() array([0.99389553, 0.98901176]) ``` ## **Testing** To run all tests, open up a console in the root directory of the project and type the following ```console >>> python -m unittest ``` ## **Dependencies** must have * `Numba`, `NumPy`, `SciPy`, `SymPy`, `awkward` optional * `networkx` ## **License** This package is licensed under the MIT license.


نیازمندی

مقدار نام
>=1.0.9 dewloosh.core
- numba
- numpy
- scipy
- awkward
- sympy


زبان مورد نیاز

مقدار نام
>=3.6, <3.11 Python


نحوه نصب


نصب پکیج whl dewloosh.math-0.0.dev8:

    pip install dewloosh.math-0.0.dev8.whl


نصب پکیج tar.gz dewloosh.math-0.0.dev8:

    pip install dewloosh.math-0.0.dev8.tar.gz