معرفی شرکت ها


devolearn-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Accelerate data driven research in developmental biology with deep learning models
ویژگی مقدار
سیستم عامل -
نام فایل devolearn-0.3.0
نام devolearn
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mayukh Deb, Ujjwal Singh, Bradly Alicea
ایمیل نویسنده mayukhmainak2000@gmail.com, ujjwal18113@iiitd.ac.in, balicea@openworm.org
آدرس صفحه اصلی https://github.com/DevoLearn/devolearn
آدرس اینترنتی https://pypi.org/project/devolearn/
مجوز -
<p align="center"> <img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/banner_1.jpg"> </p> [![Build Status](https://travis-ci.org/DevoLearn/devolearn.svg?branch=master)](https://travis-ci.org/DevoLearn/devolearn) [![](https://img.shields.io/github/issues/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/issues) [![](https://img.shields.io/github/contributors/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/graphs/contributors) [![](https://img.shields.io/github/last-commit/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/commits/master) [![](https://img.shields.io/twitter/url?color=green&label=Slack&logo=slack&logoColor=blue&style=social&url=https%3A%2F%2Fopenworm.slack.com%2Farchives%2FCMVFU7Q4W)](https://openworm.slack.com/archives/CMVFU7Q4W) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DevoLearn/data-science-demos/blob/master/devolearn_docs/devolearn_quickstart.ipynb) ## Contents * [Example notebooks](https://github.com/DevoLearn/devolearn#example-notebooks) * [Segmenting the C. elegans embryo](https://github.com/DevoLearn/devolearn#segmenting-the-c-elegans-embryo) * [Generating synthetic images of embryos with a GAN](https://github.com/DevoLearn/devolearn#generating-synthetic-images-of-embryos-with-a-pre-trained-gan) * [Predicting populations of cells within the C. elegans embryo](https://github.com/DevoLearn/devolearn#predicting-populations-of-cells-within-the-c-elegans-embryo) * [Contributing to DevoLearn](https://github.com/DevoLearn/devolearn/blob/master/.github/contributing.md#contributing-to-devolearn) * [Contact us](https://github.com/DevoLearn/devolearn#contact-us) ### Installation ```python pip install devolearn ``` ### Example notebooks <p align="center"> <img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/nodes_matrix_long_smooth.gif" width = "40%"> <img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/3d_node_map.gif" width = "40%"> </p> * [Extracting centroid maps and making 3d centroid models](https://nbviewer.jupyter.org/github/DevoLearn/data-science-demos/blob/master/Networks/experiments_with_devolearn_node_maps.ipynb) ### Segmenting the C. elegans embryo <p align="center"> <img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/pred_centroids.gif" width = "80%"> </p> * Importing the model ```python from devolearn import embryo_segmentor segmentor = embryo_segmentor() ``` * Running the model on an image and viewing the prediction ```python seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg") plt.imshow(seg_pred) plt.show() ``` * Running the model on a video and saving the predictions into a folder ```python filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds") ``` * Finding the centroids of the segmented features ```python seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True) plt.imshow(seg_pred) plt.show() ``` * Saving the centroids from each frame into a CSV ```python df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds") df.to_csv("centroids.csv") ``` ### Generating synthetic images of embryos with a Pre-trained GAN <p align="center"> <img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/generated_embryos_3.gif" width = "30%"> </p> * Importing the model ```python from devolearn import Generator, embryo_generator_model generator = embryo_generator_model() ``` * Generating a picture and viewing it with [matplotlib](https://matplotlib.org/) ```python gen_image = generator.generate() plt.imshow(gen_image) plt.show() ``` * Generating n images and saving them into `foldername` with a custom size ```python generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500)) ``` --- ### Predicting populations of cells within the C. elegans embryo <p align="center"> <img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/resnet_preds_with_input.gif" width = "60%"> </p> * Importing the population model for inferences ```python from devolearn import lineage_population_model ``` * Loading a model instance to be used to estimate lineage populations of embryos from videos/photos. ```python model = lineage_population_model(mode = "cpu") ``` * Making a prediction from an image ```python print(model.predict(image_path = "sample_data/images/embryo_sample.png")) ``` * Making predictions from a video and saving the predictions into a CSV file ```python results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10 ) ``` * Plotting the model's predictions from a video ```python plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0 ) plot.show() ``` ## Links to Datasets | **Model** | **Data source** | |-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Segmenting the C. elegans embryo | [3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2720-x#Abs1/) | | Cell lineage population prediction + embryo GAN | [EPIC dataset](https://epic.gs.washington.edu/) ## Authors/maintainers: * [Mayukh Deb](https://twitter.com/mayukh091) * [Ujjwal Singh](https://twitter.com/ujjjwalll) * [Dr. Bradly Alicea](https://twitter.com/balicea1) Feel free to join our [Slack workspace](https://openworm.slack.com/archives/CMVFU7Q4W)!


نیازمندی

مقدار نام
==0.10.0 cycler
==4.4.2 decorator
==0.6.3 efficientnet-pytorch
==0.18.2 future
==2.9.0 imageio
==0.2.5 imgaug
==0.5.3 imutils
==1.0.0 joblib
==1.3.1 kiwisolver
- matplotlib
==2.5.0 munch
==2.5 networkx
==1.19.5 numpy
==4.5.1.48 opencv-python
==1.1.5 pandas
- Pillow
==0.7.4 pretrainedmodels
==2.4.7 pyparsing
==2.8.1 python-dateutil
- pytz
==1.1.1 PyWavelets
- scikit-image
==0.24.0 scikit-learn
==1.5.4 scipy
==0.1.3 segmentation-models-pytorch
==1.15.0 six
==0.0 sklearn
==2.1.0 threadpoolctl
- tifffile
==0.3.2 timm
==1.7.0 torch
==0.8.1 torchvision
==4.56.0 tqdm
==3.7.4.3 typing-extensions
==3.2 wget


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl devolearn-0.3.0:

    pip install devolearn-0.3.0.whl


نصب پکیج tar.gz devolearn-0.3.0:

    pip install devolearn-0.3.0.tar.gz