معرفی شرکت ها


devml-0.5.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Machine Learning, Statistics and Utilities around Developer Productivity, Company Productivity and Project Productivity
ویژگی مقدار
سیستم عامل -
نام فایل devml-0.5.1
نام devml
نسخه کتابخانه 0.5.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Noah Gift
ایمیل نویسنده consulting@noahgift.com
آدرس صفحه اصلی https://github.com/noahgift/devml
آدرس اینترنتی https://pypi.org/project/devml/
مجوز MIT
|Codacy Badge| |CircleCI| devml ===== Machine Learning, Statistics and Utilities around Developer Productivity A few handy bits of functionality: - Can checkout all repositories in Github - Converts a tree of checked out repositories on disk into a pandas dataframe - Statistics on combined DataFrames Installation ------------ :: pip install devml This pip install installs a command-line tool: dml (which is referenced in the documentation below). And also library devml, which is referenced below as well. Get environment setup --------------------- Code is written to support Python 3.6 or greater. You can get that here: https://www.python.org/downloads/release/python-360/. An easy way to run the project locally is to check the repo out and in the root of the repo run: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: make setup This create a virtualenv in ~/.devml Next, source that virtualenv: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: source ~/.devml/bin/activate Run Make All (installs, lints and tests) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: make all # #Example output #(.devml) ➜ devml git:(master) make all #pip install -r requirements.txt #Requirement already satisfied: pytest in /Users/noahgift/.devml/lib/python3.6/site-packages (from -r requirements.txt (line #1) ---------- coverage: platform darwin, python 3.6.2-final-0 ----------- Name Stmts Miss Cover ---------------------------------------------- devml/__init__.py 1 0 100% devml/author_stats.py 6 6 0% devml/fetch_repo.py 54 42 22% devml/mkdata.py 84 21 75% devml/org_stats.py 76 55 28% devml/post_processing.py 50 35 30% devml/state.py 29 9 69% devml/stats.py 55 43 22% devml/ts.py 29 14 52% devml/util.py 12 4 67% dml.py 111 66 41% ---------------------------------------------- TOTAL 507 295 42% .... You don't use virtualenv or don't want to use it. No problem, just run ``make all`` it should probably work if you have python 3.6 installed. :: make all Explore Jupyter Notebooks on Github Organizations ------------------------------------------------- You can explore combined datasets here using this example as a starter: https://github.com/noahgift/devml/blob/master/notebooks/github\_data\_exploration.ipynb .. figure:: https://user-images.githubusercontent.com/58792/31581904-66ee7fc0-b12a-11e7-804a-7b0f1728f30a.png :alt: Pallets Project Pallets Project Explore Jupyter Notebooks on Repository Churn --------------------------------------------- You can explore File Metadata exploration example here: https://github.com/noahgift/devml/blob/master/notebooks/repo\_file\_exploration.ipynb All Files Churned by type: ^^^^^^^^^^^^^^^^^^^^^^^^^^ .. figure:: https://user-images.githubusercontent.com/58792/31587879-59d9724e-b19e-11e7-942e-999c02d7b566.png :alt: Pallets Project Relative Churn by file type Pallets Project Relative Churn by file type Summary Churn Statistics by type: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. figure:: https://user-images.githubusercontent.com/58792/31587931-5d79199e-b19f-11e7-89c2-98185fdef909.png :alt: Pallets Project by file type Churn statistics Pallets Project by file type Churn statistics Expected Configuration ---------------------- The command-line tools expects for you to create a project directory with a config.json file. Inside the config.json file, you will need to provide an oath token. You can find information about how to do that here: https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/. Alternately, you can pass these values in via the python API or via the command-line as options. They stand for the following: - org: Github Organization (To clone entire tree of repos) - checkout\_dir: place to checkout - oath: personal oath token generated from Github :: ➜ devml git:(master) ✗ cat project/config.json { "project" : { "org":"pallets", "checkout_dir": "/tmp/checkout", "oath": "<keygenerated from Github>" } } Basic command-line Usage ------------------------ You can find out stats for a checkout or a directory full of checkout as follows .. code:: bash dml gstats author --path ~/src/mycompanyrepo(s) Top Commits By Author: author_name commits 0 John Smith 3059 1 Sally Joe 2995 2 Greg Mathews 2194 3 Jim Mayflower 1448 Basic API Usage (Converting a tree of repo(s) into a pandas DataFrame) ---------------------------------------------------------------------- :: In [1]: from devml import (mkdata, stats) In [2]: org_df = mkdata.create_org_df(path=/src/mycompanyrepo(s)") In [3]: author_counts = stats.author_commit_count(org_df) In [4]: author_counts.head() Out[4]: author_name commits 0 John Smith 3059 1 Sally Joe 2995 2 Greg Mathews 2194 3 Jim Mayflower 1448 4 Truck Pritter 1441 Clone all repos in Github using API ----------------------------------- :: In [1]: from devml import (mkdata, stats, state, fetch_repo) In [2]: dest, token, org = state.get_project_metadata("../project/config.json") In [3]: fetch_repo.clone_org_repos(token, org, dest, branch="master") 017-10-14 17:11:36,590 - devml - INFO - Creating Checkout Root: /tmp/checkout 2017-10-14 17:11:37,346 - devml - INFO - Found Repo # 1 REPO NAME: flask , URL: git@github.com:pallets/flask.git 2017-10-14 17:11:37,347 - devml - INFO - Found Repo # 2 REPO NAME: pallets-sphinx-themes , URL: git@github.com:pallets/pallets-sphinx-themes.git 2017-10-14 17:11:37,347 - devml - INFO - Found Repo # 3 REPO NAME: markupsafe , URL: git@github.com:pallets/markupsafe.git 2017-10-14 17:11:37,348 - devml - INFO - Found Repo # 4 REPO NAME: jinja , URL: git@github.com:pallets/jinja.git 2017-10-14 17:11:37,349 - devml - INFO - Found Repo # 5 REPO NAME: werkzeug , URL: git@githu In [4]: !ls -l /tmp/checkout total 0 drwxr-xr-x 21 noahgift wheel 672 Oct 14 17:11 click drwxr-xr-x 25 noahgift wheel 800 Oct 14 17:11 flask drwxr-xr-x 11 noahgift wheel 352 Oct 14 17:11 flask-docs drwxr-xr-x 12 noahgift wheel 384 Oct 14 17:11 flask-ext-migrate drwxr-xr-x 8 noahgift wheel 256 Oct 14 17:11 flask-snippets drwxr-xr-x 14 noahgift wheel 448 Oct 14 17:11 flask-website drwxr-xr-x 18 noahgift wheel 576 Oct 14 17:11 itsdangerous drwxr-xr-x 23 noahgift wheel 736 Oct 14 17:11 jinja drwxr-xr-x 18 noahgift wheel 576 Oct 14 17:11 markupsafe drwxr-xr-x 4 noahgift wheel 128 Oct 14 17:11 meta drwxr-xr-x 10 noahgift wheel 320 Oct 14 17:11 pallets-sphinx-themes drwxr-xr-x 9 noahgift wheel 288 Oct 14 17:11 pocoo-sphinx-themes drwxr-xr-x 15 noahgift wheel 480 Oct 14 17:11 website drwxr-xr-x 25 noahgift wheel 800 Oct 14 17:11 werkzeug Advanced CLI-Author: Get Activity Statistics for a Tree of Checkouts or a Checkout and sort ------------------------------------------------------------------------------------------- :: ➜ devml git:(master) ✗ dml gstats activity --path /tmp/checkout --sort active_days Top Unique Active Days: author_name active_days active_duration active_ratio 86 Armin Ronacher 989 3817 days 0.260000 501 Markus Unterwaditzer 342 1820 days 0.190000 216 David Lord 129 712 days 0.180000 664 Ron DuPlain 78 854 days 0.090000 444 Kenneth Reitz 68 2566 days 0.030000 197 Daniel Neuhäuser 42 1457 days 0.030000 297 Georg Brandl 41 1337 days 0.030000 196 Daniel Neuhäuser 36 435 days 0.080000 450 Keyan Pishdadian 28 885 days 0.030000 169 Christopher Grebs 28 1515 days 0.020000 666 Ronny Pfannschmidt 27 3060 days 0.010000 712 Simon Sapin 22 793 days 0.030000 372 Jeff Widman 19 840 days 0.020000 427 Julen Ruiz Aizpuru 16 36 days 0.440000 21 Adrian 16 1935 days 0.010000 569 Nicholas Wiles 14 197 days 0.070000 912 lord63 14 692 days 0.020000 756 ThiefMaster 12 1287 days 0.010000 763 Thomas Waldmann 11 1560 days 0.010000 628 Priit Laes 10 1567 days 0.010000 23 Adrian Moennich 10 521 days 0.020000 391 Jochen Kupperschmidt 10 3060 days 0.000000 Advanced CLI-Churn: Get churn by file type ------------------------------------------ Get the top ten files sorted by churn count with the extension .py: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: ✗ dml gstats churn --path /Users/noahgift/src/flask --limit 10 --ext .py 2017-10-15 12:10:55,783 - devml.post_processing - INFO - Running churn cmd: [git log --name-only --pretty=format:] at path [/Users/noahgift/src/flask] files churn_count line_count extension \ 1 b'flask/app.py' 316 2183.0 .py 3 b'flask/helpers.py' 176 1019.0 .py 5 b'tests/flask_tests.py' 127 NaN .py 7 b'flask.py' 104 NaN .py 8 b'setup.py' 80 112.0 .py 10 b'flask/cli.py' 75 759.0 .py 11 b'flask/wrappers.py' 70 194.0 .py 12 b'flask/__init__.py' 65 49.0 .py 13 b'flask/ctx.py' 62 415.0 .py 14 b'tests/test_helpers.py' 62 888.0 .py relative_churn 1 0.14 3 0.17 5 NaN 7 NaN 8 0.71 10 0.10 11 0.36 12 1.33 13 0.15 14 0.07 Get descriptive statistics for extension .py and compare to another repository ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In this example, flask, this repo and cpython are all compared to see how the median churn is. :: (.devml) ➜ devml git:(master) dml gstats metachurn --path /Users/noahgift/src/flask --ext .py --statistic median 2017-10-15 12:39:44,781 - devml.post_processing - INFO - Running churn cmd: [git log --name-only --pretty=format:] at path [/Users/noahgift/src/flask] MEDIAN Statistics: churn_count line_count relative_churn extension .py 2 85.0 0.13 (.devml) ➜ devml git:(master) dml gstats metachurn --path /Users/noahgift/src/devml --ext .py --statistic median 2017-10-15 12:40:10,999 - devml.post_processing - INFO - Running churn cmd: [git log --name-only --pretty=format:] at path [/Users/noahgift/src/devml] MEDIAN Statistics: churn_count line_count relative_churn extension .py 1 62.5 0.02 (.devml) ➜ devml git:(master) dml gstats metachurn --path /Users/noahgift/src/cpython --ext .py --statistic median 2017-10-15 12:42:19,260 - devml.post_processing - INFO - Running churn cmd: [git log --name-only --pretty=format:] at path [/Users/noahgift/src/cpython] MEDIAN Statistics: churn_count line_count relative_churn extension .py 7 169.5 0.1 Get Relative Churn for an Author ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: dml gstats authorchurnmeta --author "Armin Ronacher" --path /tmp/checkout/flask --ext .py #He has 6.5% median relative churn...very good. count 193.000000 mean 0.331860 std 0.625431 min 0.001000 25% 0.030000 50% 0.065000 75% 0.250000 max 3.000000 Name: author_rel_churn, dtype: float64 Compare CPython Active Ratio with Linux Active Ratio ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: # Linux Development Active Ratio dml gstats activity --path /Users/noahgift/src/linux --sort active_days author_name active_days active_duration active_ratio 14541 Takashi Iwai 1677 4590 days 0.370000 4382 Eric Dumazet 1460 4504 days 0.320000 3641 David S. Miller 1428 4513 days 0.320000 7216 Johannes Berg 1329 4328 days 0.310000 8717 Linus Torvalds 1281 4565 days 0.280000 275 Al Viro 1249 4562 days 0.270000 9915 Mauro Carvalho Chehab 1227 4464 days 0.270000 9375 Mark Brown 1198 4187 days 0.290000 3172 Dan Carpenter 1158 3972 days 0.290000 12979 Russell King 1141 4602 days 0.250000 1683 Axel Lin 1040 2720 days 0.380000 400 Alex Deucher 1036 3497 days 0.300000 # CPython Development Active Ratio author_name active_days active_duration active_ratio 146 Guido van Rossum 2256 9673 days 0.230000 301 Raymond Hettinger 1361 5635 days 0.240000 128 Fred Drake 1239 5335 days 0.230000 47 Benjamin Peterson 1234 3494 days 0.350000 132 Georg Brandl 1080 4091 days 0.260000 375 Victor Stinner 980 2818 days 0.350000 235 Martin v. Löwis 958 5266 days 0.180000 36 Antoine Pitrou 883 3376 days 0.260000 362 Tim Peters 869 5060 days 0.170000 164 Jack Jansen 800 4998 days 0.160000 24 Andrew M. Kuchling 743 4632 days 0.160000 330 Serhiy Storchaka 720 1759 days 0.410000 44 Barry Warsaw 696 8485 days 0.080000 52 Brett Cannon 681 5278 days 0.130000 262 Neal Norwitz 559 2573 days 0.220000 In this analysis, Guido of Python has a 23% probability of working on a given day, and Linux has a 28% chance. Deletion Statistics ------------------- Find all delete files from repository ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ :: dml gstats deleted --path /Users/noahgift/src/flask DELETION STATISTICS files ext 0 b'tests/test_deprecations.py' .py 1 b'scripts/flask-07-upgrade.py' .py 2 b'flask/ext/__init__.py' .py 3 b'flask/exthook.py' .py 4 b'scripts/flaskext_compat.py' .py 5 b'tests/test_ext.py' .py FAQ --- What is Churn and Why Do I Care? ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Code churn is the amount of times a file has been modified. Relative churn is the amount of times it has been modified relative to lines of code. Research into defects in software has shown that relative code churn is highly predictive of defects, i.e., the greater the relative churn number the higher the amount of defects. "Increase in relative code churn measures is accompanied by an increase in system defect density; " You can read the entire study here: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/icse05churn.pdf .. |Codacy Badge| image:: https://api.codacy.com/project/badge/Grade/3e382eedf6424c1282aab4dd13e54c26 :target: https://www.codacy.com/app/noahgift/devml?utm_source=github.com&utm_medium=referral&utm_content=noahgift/devml&utm_campaign=badger .. |CircleCI| image:: https://circleci.com/gh/noahgift/devml.svg?style=svg :target: https://circleci.com/gh/noahgift/devml


نحوه نصب


نصب پکیج whl devml-0.5.1:

    pip install devml-0.5.1.whl


نصب پکیج tar.gz devml-0.5.1:

    pip install devml-0.5.1.tar.gz