معرفی شرکت ها


detection-datasets-0.3.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Easily load and transform datasets for object detection
ویژگی مقدار
سیستم عامل -
نام فایل detection-datasets-0.3.5
نام detection-datasets
نسخه کتابخانه 0.3.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jerome Blin
ایمیل نویسنده blinjrm@gmail.com
آدرس صفحه اصلی https://github.com/blinjrm/detection-dataset
آدرس اینترنتی https://pypi.org/project/detection-datasets/
مجوز MIT
<div align="center"> <img src="https://raw.githubusercontent.com/blinjrm/detection-datasets/main/images/dd_logo.png" alt="logo" width="100"/> <br> # Detection datasets <a href="https://www.python.org/"><img alt="Python" src="https://img.shields.io/badge/-Python 3.7-blue?style=flat-square&logo=python&logoColor=white"></a> <a href="https://black.readthedocs.io/en/stable/"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-black.svg?style=flat-square&labelColor=gray"></a> <a href="https://github.com/blinjrm/detection-datasets/actions/workflows/ci.yaml"><img src="https://img.shields.io/github/workflow/status/blinjrm/detection-datasets/CI?label=CI&style=flat-square"/></a> <a href="https://github.com/blinjrm/detection-datasets/actions/workflows/pypi.yaml"><img src="https://img.shields.io/github/workflow/status/blinjrm/detection-datasets/Python%20package?label=Build&style=flat-square"/></a> <a href="https://pypi.org/project/detection-datasets/"><img src="https://img.shields.io/pypi/status/detection-datasets?style=flat-square"/></a> <br> *Easily load and transform datasets for object detection.* </div> <br> --- **Documentation**: https://blinjrm.github.io/detection-datasets/ **Source Code**: https://github.com/blinjrm/detection-datasets **Datasets on Hugging Face Hub**: https://huggingface.co/detection-datasets --- <br> `detection_datasets` aims to make it easier to work with detection datasets. This library works alongside the [Detection dataset](https://huggingface.co/detection-datasets) organisation on the 🤗 Hub, where some detection datasets have been uploaded in the format expected by the library, and are ready to use. The main features are: * **Read** the dataset : * From disk if it has already been downloaded. * Directly from the Hugging Face Hub if it [already exist](https://huggingface.co/detection-datasets). * **Transform** the dataset: * Select a subset of data. * Remap categories. * Create new train-val-test splits. * **Visualize** the annotations and images. * **Write** the dataset: * To disk, selecting the target detection format: `COCO`, `YOLO` and more to come. * To the Hugging Face Hub for easy reuse in a different environment and share with the community. <br> <div align="center"> --- *Read the quick start bellow, or directly jump to the tutorials:* | Goal | Tutorial | Colab | |--------------------------------------|:--------:|:-----:| | Load from disk and upload to the Hub | [Open in the docs](https://blinjrm.github.io/detection-datasets/tutorials/1_Read/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/blinjrm/detection-datasets/blob/main/docs/tutorials/1_Read.ipynb) | | Load from the Hub and transform | [Open in the docs](https://blinjrm.github.io/detection-datasets/tutorials/2_Transform/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/blinjrm/detection-datasets/blob/main/docs/tutorials/2_Transform.ipynb) | --- </div> <br> # Getting started ## 0. Setup ### Requirements Python 3.7+ `detection_datasets` is upon the great work of: - [Pandas](https://pandas.pydata.org) for manipulating data. - [Hugging Face Datasets](https://huggingface.co/docs/datasets/index) to store and load datasets from the Hub. ### Installation ```console $ pip install detection_datasets ``` ### Import ```Python from detection_datasets import DetectionDataset ``` ## 1. Read ### From local filesystem ```Python config = { 'dataset_format': 'coco', # the format of the dataset on disk 'path': 'path/do/data/on/disk', # where the dataset is located 'splits': { # how to read the files 'train': ('train.json', 'train'), # name of the split (annotation file, images directory) 'test': ('test.json', 'test'), }, } dd = DetectionDataset() dd.from_disk(**config) # note that you can use method cascading as well: # dd = DetectionDataset().from_disk(**config) ``` ### From the Hugging Face Hub The `detection_dataset` library works alongside the [Detection dataset](https://huggingface.co/detection-datasets) organisation on the Hugging Face Hub, where some detection datasets have been uploaded in the format expected by the library, and are ready to use. ```Python dd = DetectionDataset().from_hub(name='fashionpedia') ``` Currently supported format for reading datasets are: - COCO - *more to come* The list of datasets available from the Hub is given by: ```Python # Search in the "detection-datasets" repository on the Hub. DetectionDataset().available_in_hub() # Search in another repository on the Hub. DetectionDataset().available_in_hub(repo_name=MY_REPO_OR_ORGANISATION) ``` ## 2. Transform The supported transformations are: ```Python # Select a subset of images, perserving the splits and their proportions dd.select(n_images=1000) # Shuffle the dataset, perserving the splits and their proportions dd.shuffle(seed=42) # Create new train-val-test splits, overwritting the splits from the original dataset dd.split(splits=[0.8, 0.1, 0.1]) # Map existing categories to new categories. # The annotations with a category absent from the mapping are dropped. dd.map_categories(mapping={'existing_category': 'new_category'}) ``` These transformations can be chained; for example here we select a subset of 10.000 images and create new train-val-test splits: ```Python dd = DetectionDataset()\ .from_hub(name='fashionpedia')\ .select(n_images=10000)\ .split(splits=[0.8, 0.1, 0.1]) ``` ## 3. Visualize The `DetectionDataset` objects contains several properties to analyze your data: ```Python dd.data # This is equivlent to calling `dd.get_data('image')`, # and returns a DataFrame with 1 row per image dd.get_data('bbox') # Returns a DataFrame with 1 row per annotation dd.n_images # Number of images dd.n_bbox # Number of annotations dd.splits # List of split names dd.split_proportions # DataFrame with the % of iamges in each split dd.categories # DataFrame with the categories and thei ids dd.category_names # List of categories dd.n_categories # Number of categories ``` You can also visualize a image with its annotations in a notebook: ```Python dd.show() # Shows a random image from the dataset dd.show(image_id=42) # Shows the select image based on image_id ``` <div align="center"> <img src="https://raw.githubusercontent.com/blinjrm/detection-datasets/main/images/show.png" alt="image with annotations" width="500"/> </div> ## 4. Write ### To local filesystem Once the dataset is ready, you can write it to the local filesystem in a given format: ```Python dd.to_disk( dataset_format='yolo', name='MY_DATASET_NAME', path='DIRECTORY_TO_WRITE_TO', ) ``` Currently supported format for writing datasets are: - YOLO - COCO - MMDET - *more to come* ### To the Hugging Face Hub The dataset can also be easily uploaded to the Hugging Face Hub, for reuse later on or in a different environment: ```Python dd.to_hub( dataset_name='MY_DATASET_NAME', repo_name='MY_REPO_OR_ORGANISATION' ) ``` The dataset viewer on the Hub will work out of the box, and we encourage you to update the README in your new repo to make it easier for the comminuty to use the dataset. <div align="center"> <img src="https://raw.githubusercontent.com/blinjrm/detection-datasets/main/images/hub.png" alt="hub viewer" width="800"/> </div>


نیازمندی

مقدار نام
>=1.3.0,<2.0.0 pandas
>=2.4.0,<3.0.0 datasets[vision]


زبان مورد نیاز

مقدار نام
>=3.7.1,<4.0.0 Python


نحوه نصب


نصب پکیج whl detection-datasets-0.3.5:

    pip install detection-datasets-0.3.5.whl


نصب پکیج tar.gz detection-datasets-0.3.5:

    pip install detection-datasets-0.3.5.tar.gz