معرفی شرکت ها


derrom-1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Derrom is a delay embedded regressive reduced order model
ویژگی مقدار
سیستم عامل -
نام فایل derrom-1.0
نام derrom
نسخه کتابخانه 1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Stefan Meinecke <stefan.meinecke@posteo.de>, Felix Köster <Felix-Koester@hotmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/derrom/
مجوز -
Delay Embedded Regressive Reduced Order Model (derrom) ====================================================== **derrom** is a **D**\elay **E**\mbedded **R**\egressive **R**\educed **O**\rder **M**\odel. It provides a modular package, which is designed to perform computationally efficient regression on high-dimensional time-series data. The model is trained with the supervised paradigm, where a set of existing input-output pairs is used to optimize the model parameters to obtain the desired regression performance. Library Reference ----------------- is hosted by readthedocs: https://derrom.readthedocs.io/en/latest/ What is it good for?: --------------------- **derrom** was conceptualized to accelerate multi-phyisics simulation code. To achieve this, a trained model replaces the direct simulation of some degree's of freedom, which themselves are not of primary interested, but are required to compute the time evolution of the relevant observables. Moreover, the delay embedding permits to omit the degree's of freedom, which do not couple to the considered observables, altogether, but keep their effect in the trained model. Note that a sufficient amount of training data must, nonetheless, be generated via the potentially expensive full simulation of the system. However, if relatively few trajectories are sufficient for a well trained model and many more are to be simulated, the **derrom** approach quickly becomes worth the trouble. A good example is the stochastic simulation of a semiconductor lasers' photon field. In that case, one likely must simulate many stochastic realizations to obtain enough samples for good statistics. The underlying charge-carrier dynamics are required for the photon field evolution and are expensive to microscopically simulate, but are not the observable of interest. Instead of resorting to rough analytic approximations, one may fully simulate the system for the first few realizations and then use the generated data to train **derrom** and use it for the remaining realizations. Who is it for?: --------------- The derrom package is intended for research/scientific use. Its focus is on easy experimentation, which is achieved via a modular implementation. E.g, further dimensionality reduction approaches and nonlinear transformations can be quickly integrated via additional moduls. Note that the code is not optimized for absolute computational speed and minimal memory usage. We assume, that once a well working derrom model is obtained, it would be integrated into an existing simulation code by reimplementing it within the code's framework. On a side note: If you are a PhD student or PostDoc, who is running a multi-physics simulation code, which must compute nonlinear transient dynamics, then the derrom package might be an easy way to get a `machine-learning` paper ;). How does it work?: ------------------ **derrom** first projects the past :math:`\ell` system states (delay embedding) into a reduced dimensionality (order) latent space. This step is designed retain the dominant patterns of the trajectories and get rid of redundant and irrelevant information. This both mitigates the curse of dimensionality and promotes robust regression. Next, the latent space features are scaled to appropriate magnitudes. Then, the past :math:`\ell` scaled reduced system states are subject to a nonlinear transformation, which yields **derrom**\'s feature vector. Lastly, the regression step is taken via a linear map, i.e., a matrix multiplication. Installation: ------------- Use pip:: pip install derrom If you want the example notebooks and some experimental modules: clone the repository:: git clone https://github.com/stmeinecke/derrom.git Make sure you fulfill all requirements, e.g., via:: pip install -r requirements.txt and you're ready to go! Examples: --------- A number of examples, which apply derrom to nonlinear solid-state transient dyanamics, are provided here: https://github.com/stmeinecke/derrom/tree/main/examples


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl derrom-1.0:

    pip install derrom-1.0.whl


نصب پکیج tar.gz derrom-1.0:

    pip install derrom-1.0.tar.gz