معرفی شرکت ها


derm-ita-0.0.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package with different strategies to compute individual typology angle
ویژگی مقدار
سیستم عامل -
نام فایل derm-ita-0.0.8
نام derm-ita
نسخه کتابخانه 0.0.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Adam Corbin
ایمیل نویسنده acorbin3@gmail.com
آدرس صفحه اصلی https://github.com/acorbin3/derm_ita
آدرس اینترنتی https://pypi.org/project/derm-ita/
مجوز -
# derm_ita This library has utilities to help evaluate skin tones in dermatology images. It can be broken up between computing the individual typology angle(ITA) and converting the ITA value to a skin tone type. The skin tone classification metadata can enhance dermoscopic datasets when trying to evaluate fairness. # Installation `pip install derm-ita` # Usage ## ITA computation ``` python from derm_ita import get_ita from PIL import Image whole_image_ita = get_ita(image=Image.open("skin.png")) ``` ## Classification ``` python from derm_ita import get_kinyanjui_type kinyanjui_type = get_kinyanjui_type(whole_image_ita) ``` # Computing ITA value The ITA value is used as a proxy to evaluate the skin tone of an image. The ITA uses the following equation ![](http://mathurl.com/render.cgi?ITA%24%20%3D%20archtan%20%5Cleft%28%5Cfrac%7BL%20-%2050%7D%7Bb%7D%20%5Cright%29%20%5Ctimes%20%5Cfrac%7B180%5E%5Ccirc%7D%7B%5Cpi%7D%24%5Cnocache) where L is luminance and b is amount of blue/yellow All the approaches have the ability to remove the boarder. For those who are using these approaches on dermoscopic datasets its advised that use the defaults to remove at least 4% of the boarder so the dark corners will be removed for the ITA computation. The intended function calls will be available [here](https://github.com/acorbin3/derm_ita/blob/master/derm_ita/derm_ita.py) ## Full image ITA One ITA computation is conducted on the full image regardless of any extra artifacts such as skin markings, lesions or stickers. ## Patch approaches Each of the following approaches will create patches of the image. Each patch will have the ITA value computed and the median in the list will be use for the overall ITA value. ### Cropped Center The Cropped Center approach tries to select the most of the image as possible but a portion of the center is removed. This is intended as many dermoscopic images have skin lesions in the center of the image which could throw off the ITA result. More detailed info at [Cropped Center](https://github.com/acorbin3/derm_ita/blob/master/derm_ita/cropped_center.py#L7). ![](https://i.imgur.com/pBJbePK.png) ### Structured patches The Structured patches approach takes the first row, the last row, first column and last column will be sampled for the ITA values. More detailed info at [Structured Patches](https://github.com/acorbin3/derm_ita/blob/master/derm_ita/structured_patches.py#L5). ![](https://i.imgur.com/ifEwWk3.png) ### Random patches The premise behind random patches is that a set of patches that do not overlap a generated and at random patches be sampled to take the ITA value from. The thought would be that because its a random sample that the majority should cover or represent the skin tone. It is possible that some patches could cover a skin lesion which will be address in a future approach. More detailed info at [Random Patches](https://github.com/acorbin3/derm_ita/blob/master/derm_ita/random_patches.py#L9). ![](https://i.imgur.com/9wJIkky.png) # Skin tone classification The Fitzpatrick scale was created to classify the different skin tones. Early reasearch was around which different skin tones were affected by sun exposure[<sup>[1]</sup>](https://onlinelibrary.wiley.com/doi/pdf/10.1111/bjd.12529). ![](https://i.imgur.com/xNYbvCl.png) Example of fitzpatrick scale ![](https://storage.googleapis.com/plos-corpus-prod/10.1371/journal.pone.0241843/1/pone.0241843.g001.PNG_L?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=wombat-sa%40plos-prod.iam.gserviceaccount.com%2F20211213%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20211213T095203Z&X-Goog-Expires=86400&X-Goog-SignedHeaders=host&X-Goog-Signature=42d5d7755b000b9b13e3d8198d6eeb9d76d27868a0b5443f36e7c051e14c6e9b2b8fdf5423916c15a3697cbd4c905c59b02debb8d088abb4ec185ac6e5ca9350ac54fdd9c7a8943f4bef108627c17ee9b161635421116fd3636e7a7d66072fb9cfb64038283323146817d54c6dc1ced4d4f03cb5727706c70547a409bfa78c503dbf162d4e679eb803b5615a0498cab3de2fe5b91c750224c263f90fb824d9c434744e3a9048cc8827410cbd799432f66c80d548741557d31a250ca8f5441b3ab656a2165d7579508a13a892d1472a2d432b781d1e33d7801d806baf960ef52f56849e928d253259248e63df909b1bcf7fcc7f6babe768b924f0be62b72b5f19) ## Functions The different scales to convert ITA to a skin tone can be found on [skin_tone_classification](https://github.com/acorbin3/derm_ita/blob/master/derm_ita/skin_tone_classification.py) ## Table 1 Fitzpatrick ranges |ITA Range| Skin Tone Category| |--|--| |55<sup>°</sup> < ITA | Type1| |41<sup>°</sup>< ITA ≤ 55<sup>°</sup>|Type2| |28<sup>°</sup>< ITA ≤ 41<sup>°</sup>|Type3| |19<sup>°</sup>< ITA ≤ 28<sup>°</sup>|Type4| |10<sup>°</sup>< ITA ≤ 19<sup>°</sup>|Type5| |ITA ≤ 10<sup>°</sup>|Type6| ## Table 2 Groh ranges |ITA Range| Skin Tone Category| |--|--| |40<sup>°</sup> < ITA | Type1| |23<sup>°</sup>< ITA ≤ 40<sup>°</sup>|Type2| |12<sup>°</sup>< ITA ≤ 23<sup>°</sup>|Type3| |0<sup>°</sup>< ITA ≤ 12<sup>°</sup>|Type4| |-25<sup>°</sup>< ITA ≤ 0<sup>°</sup>|Type5| |ITA ≤ -25<sup>°</sup>|Type6| [Groh source](https://openaccess.thecvf.com/content/CVPR2021W/ISIC/papers/Groh_Evaluating_Deep_Neural_Networks_Trained_on_Clinical_Images_in_Dermatology_CVPRW_2021_paper.pdf) ## Kinyanjui ranges |ITA Range| Skin Tone Category| |--|--| |55<sup>°</sup> < ITA | Very Light| |48<sup>°</sup>< ITA ≤ 55<sup>°</sup>|Light 2| |41<sup>°</sup>< ITA ≤ 48<sup>°</sup>|Light 1| |34.5<sup>°</sup>< ITA ≤ 41<sup>°</sup>|Intermediate 2| |28<sup>°</sup>< ITA ≤ 34.5<sup>°</sup>|Intermediate 1| |18<sup>°</sup>< ITA ≤ 28<sup>°</sup>|Tan2| |10<sup>°</sup>< ITA ≤ 18<sup>°</sup>|Tan1| |ITA ≤ 10<sup>°</sup>|Dark| [Kinyanjui source](http://krvarshney.github.io/pubs/KinyanjuiOCCPSV_miccai2020.pdf) ## Del Bino ranges |ITA Range| Skin Tone Category| |--|--| |55<sup>°</sup> < ITA | Very Light| |41<sup>°</sup>< ITA ≤ 55<sup>°</sup>|Light| |28<sup>°</sup>< ITA ≤ 41<sup>°</sup>|Intermediate| |10<sup>°</sup>< ITA ≤ 28<sup>°</sup>|Tan| |-30<sup>°</sup>< ITA ≤ 10<sup>°</sup>|Brown| |ITA ≤ -30<sup>°</sup>|Dark| [Del Bino source](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241843) # Suggestions - Best used on dermoscopic images where the image is focused on a skin lesion. # Contribute or report issues If you would like to contribute please submit a [Feature request](https://github.com/acorbin3/https://github.com/acorbin3/derm_ita/blob/master/derm_ita/issues/new?assignees=&labels=&template=feature_request.md&title=). If you find an issue please submit a [Bug Report](https://github.com/acorbin3/https://github.com/acorbin3/derm_ita/blob/master/derm_ita/issues/new?assignees=&labels=&template=bug_report.md&title=)


نیازمندی

مقدار نام
>=1.21 numpy
>=8.4 Pillow
>=57 setuptools
>=0.19 scikit-image
>=0.2.3 patchify
>=4 pytest
>=2 pytest-cov
>=4 pytest
>=2 pytest-cov


نحوه نصب


نصب پکیج whl derm-ita-0.0.8:

    pip install derm-ita-0.0.8.whl


نصب پکیج tar.gz derm-ita-0.0.8:

    pip install derm-ita-0.0.8.tar.gz