معرفی شرکت ها


deployme-0.5.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

minimalistic ML-models auto deployment tool
ویژگی مقدار
سیستم عامل -
نام فایل deployme-0.5.0
نام deployme
نسخه کتابخانه 0.5.0
نگهدارنده []
ایمیل نگهدارنده ['Konstantin Templin <1qnbhd@gmail.com>, Kristina Zheltova <masterkristall@gmail.com>']
نویسنده -
ایمیل نویسنده Konstantin Templin <1qnbhd@gmail.com>, Kristina Zheltova <masterkristall@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/deployme/
مجوز -
# DeployMe <p align="center"> <img width="600" height="250" src="docs/source/deployme-logo-p.svg"> </p> <div align="center"> ![Codacy grade](https://img.shields.io/codacy/grade/cc8845c151cc45919bfd193e266df293?style=for-the-badge) ![GitHub branch checks state](https://img.shields.io/github/checks-status/qnbhd/deployme/main?style=for-the-badge) ![Codecov](https://img.shields.io/codecov/c/github/qnbhd/deployme?style=for-the-badge) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/deployme?style=for-the-badge) [<img height="40" width="120" src="https://user-images.githubusercontent.com/6369915/200408291-f0a22126-00b4-4680-ad29-6f3fc48b4e2e.png">](https://deployme.readthedocs.io/en/latest/) </div> If you have been working on ML models, then you have probably faced the task of deploying these models. Perhaps you are participating in a hackathon or want to show your work to management. According to our survey, more than `60%` of the data-scientists surveyed faced this task and more than `60%` of the respondents spent more than half an hour creating such a service. The most common solution is to wrap it in some kind of web framework (like Flask). Our team believes that it can be made even easier! Our tool automatically collects all the necessary files and dependencies, creates a docker container, and launches it! And all this in one line of source code. # Pipeline <p align="center"> <img width="800" height="400" src="docs/pipeline.svg"> </p> 1. First, we initialize the project directory for the next steps; 2. Next, we serialize your machine learning models (for example, with Joblib or Pickle); 3. Next, we create a final `.py` file based on the templates that contains the endpoint handlers. Handlers are chosen based on models, and templates based on your preferences (templates are also `.py` files using, for example, Sanic or Flask); 4. Copy or additionally generate the necessary files (e.g. Dockerfile); 5. The next step is to compile the API documentation for your project; 6. After these steps, we build a Docker container, or a Python package, or we just leave the final directory and then we can deploy your project in Kubernetes, or in Heroku. ## Prerequisites On your PC with local run you must have Docker & Python >= 3.8 ## Installation Install `deployme` with pip: ```bash pip install deployme ``` or with your favorite package manager. ## Example ```python from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier from deployme import cook X, y = load_iris(return_X_y=True, as_frame=True) clf = RandomForestClassifier() clf.fit(X, y) cook(strategy="docker", model=clf, port=5010) ``` After running script you can see new Docker container. To interact with service simply open URL, logged after script running. On this page you can see Swagger UI, test simple requests (examples included). For direct post-requests you can use Curl: ```bash curl -X POST "http://127.0.0.1:5001/predict" -H "accept: application/json" -H "Content-Type: application/json" -d "{\"data\":[{\"sepal length (cm)\":5.8,\"sepal width (cm)\":2.7,\"petal length (cm)\":3.9,\"petal width (cm)\":1.2}]}" ``` ## Models support Currently, we support the following models: - `sklearn` - `xgboost` - `catboost` - `lightgbm` ## RoadMap 1. Deploy to Heroku & clusters 2. Model's basic vizualization 3. Tighter integration with [LightAutoML](https://github.com/sb-ai-lab/LightAutoML) 4. Support many popular ML-frameworks, such as `XGBoost`, `TensorFlow`, `CatBoost`, etc. 5. *Your ideas!* ## Contribution We are always open to your contributions! Please check our issue's and make PR.


نیازمندی

مقدار نام
- click==8.1.3
- pandas==1.5.1
- numpy==1.23.4
- scikit-learn==1.1.3
- rich==12.6.0
- docker==6.0.1
- importlib_metadata==5.0.0
- black==22.10.0
- mypy==0.950
- returns==0.19.0
- isort==5.10.1
- emoji==2.2.0
- flask==2.2.2
- pydantic==1.10.2
- flask-pydantic==0.11.0
- sanic==22.9.1
- sanic-ext==22.9.1
- packaging==21.3
- nbformat==5.7.0
- dill==0.3.6
- joblib==1.2.0
- tabulate==0.9.0


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl deployme-0.5.0:

    pip install deployme-0.5.0.whl


نصب پکیج tar.gz deployme-0.5.0:

    pip install deployme-0.5.0.tar.gz