معرفی شرکت ها


depict-1.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Business grade visualizations in seconds
ویژگی مقدار
سیستم عامل -
نام فایل depict-1.0.4
نام depict
نسخه کتابخانه 1.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Victor Boulanger
ایمیل نویسنده vb@live.fr
آدرس صفحه اصلی https://github.com/vboulanger/depict
آدرس اینترنتی https://pypi.org/project/depict/
مجوز -
<img src="https://raw.githubusercontent.com/vboulanger/depict/master/logo_and_name.png" alt = "drawing" WIDTH=500/></img> <br> <a href="https://travis-ci.com/vboulanger/depict"> <img src="https://travis-ci.com/vboulanger/depict.svg?branch=master" alt="CI" /> </a> <a href='https://depict.readthedocs.io/en/latest/?badge=latest'> <img src='https://readthedocs.org/projects/depict/badge/?version=latest' alt='Documentation Status' /> </a> <a href="https://pypi.org/project/depict/"> <img src="https://img.shields.io/pypi/v/depict.svg" alt="latest release" /> </a> <a href="https://pypi.org/project/depict/"> <img src="https://img.shields.io/pypi/status/depict.svg" alt="status" /> </a> <a href="https://pypi.org/project/depict/"> <img src="https://img.shields.io/pypi/l/depict.svg" alt="license" /> </a> <a href="https://pepy.tech/project/depict"> <img src="https://pepy.tech/badge/depict" alt="download" /> </a> **Business grade visualizations in seconds.** Depict is built on the top of Bokeh. It aims at providing one-line access to the most common types of graph by setting opinionated default and avoiding boilerplate code. Graphs are aesthetic, efficiently rendered, interactive and sharable. It is made for data-{scientist, analyst, engineer, lead, etc} seeking to create beautiful plots while reducing the graph-tweaking time. # Guiding principles * **Made simple** While Bokeh, Matplotlib, Dash and many others provide a tremendous flexibility, Depict will get you faster to the classical graphs by making choices for you. Scatter plots, histograms and other heat-maps are accessible in one line. * **Looking fresh** Graphs should be ready to share and pleasant to look at, for technical and non technical audience. Depict takes care of the freshness of your graphs to let you focus on the maths. * **Stay organized** Depict helps you save you graphs in html with textual metadata and share them around. Your plots are kept interactive, contextualized and readable in the browser. * **Infinitely customizable with Bokeh** You want to personalize you graph further? You can use Bokeh glyphs to interact with depict figure and get access to a fine level of granularity. # Install * Install depict from PyPI (recommended): `pip install depict` * Install depict from GitHub sources: Clone the git repository `git clone https://github.com/vboulanger/depict.git` Inside the depict folder, install the package ``` cd depict sudo python setup.py install ``` # Documentation The documentation can be found at: [https://depict.readthedocs.io](https://depict.readthedocs.io). # Get started ### Hello world ```python import depict depict.line([3, 1, 4, 1, 5, 9, 2, 6, 5, 3]) ``` ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/plot_1.png) ### Key features Common to all examples: ```python import depict import numpy as np import pandas as pd ``` * #### One line graphs ```python random_walk = np.cumsum(np.random.rand(1000) - 0.5) depict.line(random_walk, title='Random walk', legend='Path', x_label='Step') ``` ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/plot_random_walk.png) * #### Sessions Your graph parameters are stored in a session to keep your graphs visually consistent and avoid boilerplate code. ```python depict.session(width=1000, grid_visible=True, palette_name='linear_blue') ``` * #### Color bars made easy ```python x = np.random.random(1000) y = np.random.random(1000) color = np.sin(x) + np.sin(y) depict.point(x=x, y=y, color=color) ``` ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/colorbar.png) * #### Smart date handling and parsing ```python x = ['Jan 2018', 'Feb 2018', 'Mar 2018', 'Apr 2018'] y = [1.1, 2.2, 1.9, 2.8] depict.histogram(x=x, y=y) ``` ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/datetime_parsing.png) * #### Flexibility Native compatibility with numpy arrays and pandas dataframes as well as NaN and NaT handling. ```python random_walk = lambda : np.cumsum(np.random.rand(1000) - 0.5) df = pd.DataFrame({'Col 1': random_walk(), 'Col 2': random_walk()}) depict.line(y=['Col 1', 'Col 2'], source_dataframe=df) ``` ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/plot_random_walk_2.png) * #### Matrix-like layout You plots can be rendered in line and column just like a matrix would be. ```python random_walk = lambda : np.cumsum(np.random.rand(1000) - 0.5) plot_1 = depict.line(y=random_walk(), title='Walk 1', show_plot=False) plot_2 = depict.line(y=random_walk(), title='Walk 2', show_plot=False) plot_3 = depict.line(y=random_walk(), title='Walk 3', show_plot=False) depict.show([[plot_1, plot_2], [plot_3]]) ``` ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/matrix-like-layout.png) * #### Sum graphs, just like numbers Plots sharing a consistent background space can be summed and their content will be superimposed. ```python p_1 = depict.point(x=np.arange(10), y=np.arange(10) + np.random.rand(10)) p_2 = depict.line(y=np.arange(10), color='purple') p_sum = p_1 + p_2 depict.show([[p_1, p_2], p_sum]) ``` ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/sum_graph.png) * #### Textual metadata Graphs often come along with a context. For that reason you can add HTML-formatted text to be displayed below your graph. ```python description = """ <h2>Graph generated for the README</h2> <br> HTML code can be added here """ plot_1 = depict.histogram(np.random.rand(10), description=description) ``` ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/hist_example_context.png) * #### Direct access to Bokeh figure To access a finer level of customization, you can retrieve the Bokeh figure object easily and interact with it. ```python plot = depict.histogram(x=None, y=[1, 2, 3], show_plot=False) plot.figure # This is a Bokeh figure ``` * #### HTML export Graphs as HTML files allow you to keep them fully interactive and readable without any specific software and on several platforms. ```python depict.point(x=[1, 2, 3], y=[4, 5, 2], save_path='my_plot.html') ``` * #### Jupyter notebook / JupyterLab integration Bokeh is nicely integrated in Jupyter notebooks and so does Depict. ![Image_1](https://raw.githubusercontent.com/vboulanger/depict/master/images_read_me/notebook_integration.png) # Contributing The development of Depict takes place on Github. Any contribution is welcome!


نیازمندی

مقدار نام
>=2.0.0 bokeh
>=0.24.2 pandas
>=0.9.0 seaborn
- Sphinx
- pycodestyle
- pytest


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl depict-1.0.4:

    pip install depict-1.0.4.whl


نصب پکیج tar.gz depict-1.0.4:

    pip install depict-1.0.4.tar.gz