معرفی شرکت ها


density_forest-0.5.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Density Forest library for confidence estimation and novelty detection
ویژگی مقدار
سیستم عامل -
نام فایل density_forest-0.5.1
نام density_forest
نسخه کتابخانه 0.5.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Cyril Wendl
ایمیل نویسنده cyrilwendl@gmail.com
آدرس صفحه اصلی https://github.com/CyrilWendl/SIE-Master
آدرس اینترنتی https://pypi.org/project/density_forest/
مجوز MIT
# Density Forest This library was developed within an EPFL Master Project, Spring Semester 2018. GitHub repository: https://github.com/CyrilWendl/SIE-Master ## 📖 Usage of the `DensityForest` class: #### Fitting a Density Forest Suppose you have your training data `X_train` and test data `X_test`, in `[N, D]` with `N` data points in `D` dimensions: ```python from density_forest.density_forest import DensityForest clf_df = DensityForest(**params) # create new class instance, put hyperparameters here clf_df.fit(X_train) # fit to a training set conf = clf_df.decision_function(X_test) # get confidence values for test set outliers = clf_df.predict(X_test) # predict whether a point is an outlier (-1 for outliers 1, for inliers) ``` Hyperparameters are documented in the docstring. To find the optimal hyperparameters, consider the section below. #### Finding Hyperparameters To find the optimal hyperparameters, use the `ParameterSearch` from `helpers.cross_validator`, which allows CV, and hyperparameter search. ```python from helpers.cross_validator import ParameterSearch # define hyperparameters to test tuned_params = [{'max_depth':[2, 3, 4], 'n_trees': [10, 20]}] # optionally add non-default arguments as single-element arrays default_params = [{'verbose':0, ...}] # other default parameters # do parameter search ps = ParameterSearch(DensityForest, tuned_parameters, X_train, X_train_all, y_true_tr, f_scorer, n_iter=2, verbosity=0, n_jobs=1, default_params=default_params) ps.fit() # get model with the best parameters, as above clf_df = DensityForest(**ps.best_params, **default_params) # create new class instance with best hyperparameters ... # continue as above ``` Check the docstrings for more detailed documentation af the `ParameterSearch` class. ## 🗂 File Structure ### 👾 Code All libraries for density forests, helper libraries for semantic segmentation and for baselines. #### `density_forest/` Package for implementation of Decision Trees, Random Forests, Density Trees and Density Forests - `create_data.py`: functions for generating labelled and unlabelled data - `decision_tree.py`: data structure for decision tree nodes - `decision_tree_create.py`: functions for generating decision trees - `decision_tree_traverse.py`: functions for traversing a decision tree and predicting labels - `density_forest.py`: functions for creating density forests - `density_tree.py`: data struture for density tree nodes - `density_tree_create.py`: functions for generating a density tree - `density_tree_traverse.py`: functions for descending a density tree and retrieving its cluster parameters - `helper.py`: various helper functions - `random_forests.py`: functions for creating random forests #### `helpers/`: General helpers library for semantic segmentation - `data_augment.py`: custom data augmentation methods applied to both the image and the ground truth - `data_loader.py`: PyTorch data loader for Zurich dataset - `helpers.py`: functions for importing, cropping, padding images and other related image tranformations - `parameter_search.py`: functions for finding optimal hyperparameters for Density Forest, OC-SVM and GMM (explained above) - `plots.py`: Generic plotter functions for labelled and unlabelled 2D and 3D plots, used for t-SNE and PCA plots #### `baselines/`: Helper functions for confidence estimation baselines MSR, margin, entropy and MC-Dropout #### `keras_helpers/` Helper functions for Keras - `helpers.py`: get activations - `callbacks.py`: callbacks to be evaluated after each epoch - `unet.py`: UNET model for training of network on Zurich dataset ### 🗾 Visualizations #### `density_forest/`: Visualizations of basic decision tree and density tree - `Decision Forest.ipynb`: Decision Trees and Random Forest on randomly generated labelled data - `Density Forest.ipynb`: Density Trees on randomly generated unlabelled data ## 🎓 Supervisors: - Prof. Devis Tuia, University of Wageningen - Diego Marcos González, University of Wageningen - Prof. François Golay, EPFL Cyril Wendl, 2018


نیازمندی

مقدار نام
- Cython
- numpy
- matplotlib
- scipy
- tqdm
- scikit-image
- pandas
- joblib
- pip
- sklearn


نحوه نصب


نصب پکیج whl density_forest-0.5.1:

    pip install density_forest-0.5.1.whl


نصب پکیج tar.gz density_forest-0.5.1:

    pip install density_forest-0.5.1.tar.gz