معرفی شرکت ها


dengraph-0.1.dev0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

UNKNOWN
ویژگی مقدار
سیستم عامل -
نام فایل dengraph-0.1.dev0
نام dengraph
نسخه کتابخانه 0.1.dev0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Eileen Kuehn, Max Fischer
ایمیل نویسنده maxfischer2781@gmail.com
آدرس صفحه اصلی UNKNOWN
آدرس اینترنتی https://pypi.org/project/dengraph/
مجوز UNKNOWN
dengraph - Density-based Graph Clustering ========================================= |travis| |codecov| |landscape| DenGraph performs a density-based graph clustering. The algorithm was proposed as an extension for DBSCAN to support overlapping clusters. The approach is based around the neighbourhood of a node. The neighbourhood is defined by the *number* of reachable nodes within a given *distance*. Therefore, large groups of items which are close to each other form clusters. As DenGraph is a non-partitioning approach, isolated, distinct and uncommon items are left unclustered. Instead, they are treated as noise. Quick Overview -------------- To use ``dengraph`` for clustering your data, two steps are required: - Your data must be provided via the ``dengraph.graph.Graph`` interface. See the ``dengraph.graphs`` module for appropriate containers and examples. - The graph must be fed to ``dengraph.dengraph.DenGraphIO``. .. code:: python >>> from dengraph.graphs.distance_graph import DistanceGraph >>> from dengraph.dengraph import DenGraphIO >>> # Graph with defined nodes, edges from distance function >>> graph = DistanceGraph( ... nodes=(1, 2, 3, 4, 5, 10, 11, 13, 14, 15, 17, 22, 23, 24, 25, 28, 29, 30, 31), ... distance=lambda node_from, node_to: abs(node_from - node_to) ... ) >>> # Cluster the graph >>> clustered_data = DenGraphIO(graph, cluster_distance=2, core_neighbours=3).clusters >>> # And print clusters >>> for cluster in sorted(clustered_data, key=lambda clstr: min(clstr)): ... print(sorted(cluster)) [1, 2, 3, 4, 5] [11, 13, 14, 15, 17] [22, 23, 24, 25] [28, 29, 30, 31] Further Information ------------------- At the moment, you must refer to the module and class documentation. - See ``dengraph.dengraph.DenGraphIO`` for an explanation of clustering settings. - See ``dengraph.graph.Graph`` for documentation of the graph interface. Useful Classes .............. We provide several implementations and tools for the ``Graph`` interface: - Create a graph from a list of nodes and a distance function via ``dengraph.graphs.distance_graph.DistanceGraph`` - Create a graph from adjacency lists via ``dengraph.graphs.adjacency_graph.AdjacencyGraph`` - Read a distance matrix to a graph via ``dengraph.graphs.graph_io.csv_graph_reader`` Frequently Asked Questions -------------------------- - Why is there no ``DenGraphHO`` class? We haven't implemented that one yet. It's on our Todo. - Why is there no ``DenGraph`` class? The original DenGraph algorithm is non-deterministic for unordered graphs. Since border nodes can belong to only one cluster, the first cluster wins - results depend on iteration order. The ``DenGraphIO`` algorithm does not have this issue and performs equally well. - Why is ``DenGraphO`` the same class as ``DenGraphIO``? Algorithmically, ``DenGraphIO`` is basically ``DenGraphO`` *plus* the option to insert/remove/modify nodes/edges. In the static case (just initialisation), both are equivalent. At the moment, we don't have any optimisations based on immutability of ``DenGraphO``. The alias exists so that applications can distinguish between the two, possibly benefiting from future optimisations. Acknowledgement --------------- This module is based on several publications: - [1] T. Falkowski, A. Barth, and M. Spiliopoulou, "DENGRAPH: A Density-based Community Detection Algorithm," presented at the IEEE/WIC/ACM International Conference on Web Intelligence (WI'07), 2007, pp. 112–115. - [2] T. Falkowski, A. Barth, and M. Spiliopoulou, “Studying community dynamics with an incremental graph mining algorithm,” AMCIS 2008 Proceedings, 2008. - [3] N. Schlitter, T. Falkowski, and J. Lässig, "DenGraph-HO - a density-based hierarchical graph clustering algorithm.," Expert Systems, vol. 31, no. 5, pp. 469–479, 2014. .. |travis| image:: https://travis-ci.org/MaineKuehn/dengraph.svg?branch=master :target: https://travis-ci.org/MaineKuehn/dengraph :alt: Unit Tests .. |codecov| image:: https://codecov.io/gh/MaineKuehn/dengraph/branch/master/graph/badge.svg :target: https://codecov.io/gh/MaineKuehn/dengraph :alt: Code Coverage .. |landscape| image:: https://landscape.io/github/MaineKuehn/dengraph/master/landscape.svg?style=flat :target: https://landscape.io/github/MaineKuehn/dengraph/master :alt: Code Health


نحوه نصب


نصب پکیج whl dengraph-0.1.dev0:

    pip install dengraph-0.1.dev0.whl


نصب پکیج tar.gz dengraph-0.1.dev0:

    pip install dengraph-0.1.dev0.tar.gz