معرفی شرکت ها


demography-0.0.2.post3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Demographic mapping based on UK ONS & census data.
ویژگی مقدار
سیستم عامل -
نام فایل demography-0.0.2.post3
نام demography
نسخه کتابخانه 0.0.2.post3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mark Douthwaite
ایمیل نویسنده mark@douthwaite.io
آدرس صفحه اصلی https://github.com/markdouthwaite/demography
آدرس اینترنتی https://pypi.org/project/demography/
مجوز MIT
# demography This package implements a simple mechanism for quickly loading demographic data based on post codes. This is currently only implemented for the UK. It is based on data made available by the UK's Office for National Statistics (ONS). The data was taken from [Geoportal](https://geoportal.statistics.gov.uk/datasets). If you want to jump to seeing how this package can play with `pandas`, [see below](#playing-with-pandas). The package comes with built-in caching, makes extensive use of hash maps (i.e. dictionaries), and should generally be pretty fast! As well as providing mappings to `OAC11` groups (demographic codes), you can also map to lower-level groups within these codes too. See below for examples. Hopefully it'll save you having to repeatedly find, load and transform ONS census data! ## Getting started You can install `demography` with: ```bash pip install demography ``` There's only really one main function in this package, and it works like this: ```python import demography demography.get("SW1A 0AA", using="groups") ``` You'll get something like: ``` ['Cosmopolitans', 'Aspiring and affluent', 'Highly-qualified quaternary workers'] ``` These are Classification for Output Areas (OAC) _groups_ -- demographic groupings provided by ONS for specific regions. If a specific OAC group cannot be found from the full postcode, it will default to using the prefix value (i.e. area-level demographics). If this too does not return a value, it will return the value provided by the `default` parameter. You can also get the group codes: ```python demography.get("SW1A 0AA", using="oac") ``` And you'd get: ```text 2D2 ``` If you want to access the mappings between OAC codes and the groups together, you can use: ```python demography.groups("uk") ``` To give: ```text {'1A1': ['Rural residents', 'Farming communities', 'Rural workers and families'], '1A2': ['Rural residents', 'Farming communities', 'Established farming communities'] ... ``` Finally, it can be useful to have these groups encoded with: ```python demography.get("SW1A 0AA", using="encoded_groups") ``` To give: ```text [30, 55, 59] ``` To retrieve the encodings for this, you can use: ```python demography.encoded_groups("uk") ``` ### Validation As an additional benefit, you can enable validation for postcodes with: ```python demography.get("SW1A 0AA", using="encoded_groups", validate=True) ``` ## Playing with pandas You can use `demography` to encode `pandas.DataFrame` columns pretty easily too: ```python import pandas as pd import demography as dm df = pd.read_csv("my-dataset.csv") # get the encoded 'super group', 'group', 'sub group' set. data_gen = (dm.get(code, using="encoded_groups") for code in df["postcode"]) # build a dataframe dm_df = pd.DataFrame(data=data_gen, columns=["super_group", "group", "sub_group"]) # horizontally concatenate the groups dataframe to your original frame. df = pd.concat([df, dm_df], axis=1) ``` Or alternatively, if you only need `oac11` codes, you can use: ```python df["demographic"] = df["postcode"].apply(lambda _: dm.get(_)) ``` Note that you'll need to use the name of your column for `postcode`!


نیازمندی

مقدار نام
- pytest
- markdown
- black


نحوه نصب


نصب پکیج whl demography-0.0.2.post3:

    pip install demography-0.0.2.post3.whl


نصب پکیج tar.gz demography-0.0.2.post3:

    pip install demography-0.0.2.post3.tar.gz