معرفی شرکت ها


demographic-modeling-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Demographic Modeling
ویژگی مقدار
سیستم عامل -
نام فایل demographic-modeling-0.3.0
نام demographic-modeling
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Joel McCune
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/demographic-modeling/
مجوز Apache 2.0
# demographic-modeling-module Demographic Modeling is _opinionated_ tooling for performing demographic analysis using both geography and machine learning. ## Opinionated No, this set of tooling written in Python is not going to have a political debate with you. Rather, while flexible enough to be used in a variety of ways, this tooling provides a clear way to perform analysis. This enables you to get started and be productive as quickly as possible. ## Getting Started From the project directory, create an environment with all dependencies installed and linked. ``` > make env ``` This creates a conda environment cloned from the ArcGIS Pro default environment `arcgispro-py3`, and names this new environment `demographic-modeling`, and also activates this environment for ArcGIS Pro at the same time. If opening a new command prompt, you can easily activate this environment using the command.. ``` > make env_activate ``` ...which simply calls `> activate demographic-modeling` for you. From there, the example workflow can be found in the notebooks in the `./notebooks` directory of the project, and explored by simply calling. ``` > make jupyter ``` This command takes care of activating the environment, and also starting jupyter lab, so you can get started quickly. ## Project Organization ------------ ``` ├── LICENSE ├── Makefile <- Makefile with commands like `make data` ├── make.bat <- Windows batch file with commands like `make data` ├── setup.py <- Setup script for the library (dm) ├── .env <- Any environment variables here - created as part of project creation, │ but NOT syncronized with git repo for project. ├── README.md <- The top-level README for developers using this project. ├── arcgis <- Root location for ArcGIS Pro project created as part of │ │ data science project creation. │ ├── demographic-modeling-module.aprx <- ArcGIS Pro project. │ └── demographic-modeling-module.tbx <- ArcGIS Pro toolbox associated with the project. ├── scripts <- Put scripts to run things here. ├── data │ ├── external <- Data from third party sources. │ ├── interim <- Intermediate data that has been transformed. │ │ └── interim.gdb │ ├── processed <- The final, canonical data sets for modeling. │ │ └── processed.gdb │ └── raw <- The original, immutable data dump. │ └── raw.gdb ├── docs <- A default Sphinx project; see sphinx-doc.org for details ├── models <- Trained and serialized models, model predictions, or model summaries ├── notebooks <- Jupyter notebooks. Naming convention is a 2 digits (for ordering), │ │ descriptive name. e.g.: 01_exploratory_analysis.ipynb │ └── notebook_template.ipynb ├── references <- Data dictionaries, manuals, and all other explanatory materials. ├── reports <- Generated analysis as HTML, PDF, LaTeX, etc. │ └── figures <- Generated graphics and figures to be used in reporting ├── environment.yml <- The requirements file for reproducing the analysis environment. This │ is generated by running `conda env export > environment.yml` or │ `make env_export`. └── src <- Source code for use in this project. └── dm <- Library containing the bulk of code used in this project. ``` <p><small>Project based on the <a target="_blank" href="https://github.com/knu2xs/cookiecutter-geoai">cookiecutter GeoAI project template</a>. This template, in turn, is simply an extension and light modification of the <a target="_blank" href="https://drivendata.github.io/cookiecutter-data-science/">cookiecutter data science project template</a>. #cookiecutterdatascience</small></p>


نحوه نصب


نصب پکیج whl demographic-modeling-0.3.0:

    pip install demographic-modeling-0.3.0.whl


نصب پکیج tar.gz demographic-modeling-0.3.0:

    pip install demographic-modeling-0.3.0.tar.gz