معرفی شرکت ها


deltaconv-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Implementation of DeltaConv: an anisotropic operator for geometric deep learning on point clouds (and other discretizations that will be added in the future).
ویژگی مقدار
سیستم عامل -
نام فایل deltaconv-1.0.2
نام deltaconv
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ruben Wiersma
ایمیل نویسنده rubenwiersma@gmail.com
آدرس صفحه اصلی https://github.com/rubenwiersma/deltaconv
آدرس اینترنتی https://pypi.org/project/deltaconv/
مجوز MIT
# DeltaConv [[Paper]](https://rubenwiersma.nl/assets/pdf/DeltaConv.pdf) [[Project page]](https://rubenwiersma.nl/deltaconv) Code for the SIGGRAPH 2022 paper "[DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds](https://arxiv.org/abs/2111.08799)" by Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt. Anisotropic convolution is a central building block of CNNs but challenging to transfer to surfaces. DeltaConv learns combinations and compositions of operators from vector calculus, which are a natural fit for curved surfaces. The result is a simple and robust anisotropic convolution operator for point clouds with state-of-the-art results. ![](img/deltaconv.png) *Top: unlike images, surfaces have no global coordinate system. Bottom: DeltaConv learns both scalar and vector features using geometric operators.* ## Contents - [Installation](#installation) - [Replicating the experiments](#replicating-the-experiments) - [Tests](#tests) - [Citation](#citations) ## Installation 1. Clone this repository: ```bash git clone https://github.com/rubenwiersma/deltaconv.git ``` 2. Create a conda environment from the `environment.yml`: ```bash conda env create -n deltaconv -f environment.yml ``` Done! ### Manual installation If you wish to install DeltaConv in your own environment, proceed as follows. 1. Make sure that you have installed: - Numpy - `pip install numpy` - [PyTorch](https://pytorch.org/get-started/locally/) - see [instructions](https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html) - [PyG](https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html) - `conda install pyg -c pyg` 2. Install DeltaConv: ```bash pip install deltaconv ``` ### Building DeltaConv for yourself 1. Make sure you clone the repository with submodules: ```bash git clone --recurse-submodules https://github.com/rubenwiersma/deltaconv.git ``` If you have already cloned the repository without submodules, you can fix it with `git submodule update --init --recursive`. 2. Install from folder: ```bash cd [root_folder] pip install ``` ## Replicating the experiments See the README.md in `replication_scripts` for instructions on replicating the experiments and using the pre-trained weights (available in `experiments/pretrained_weights`). In short, you can run bash scripts to replicate our experiments. For example, evaluating pre-trained weights on ShapeNet: ```bash cd [root_folder] conda activate deltaconv bash replication_scripts/pretrained/shapenet.sh ``` You can also directly run the python files in `experiments`: ```bash python experiments/train_shapenet.py ``` Use the `-h` or `--help` flag to find out which arguments can be passed to the training script: ```bash python experiments/train_shapenet.py -h ``` You can keep track of the training process with tensorboard: ```bash tensorboard logdir=experiments/runs/shapenet_all ``` ### Anisotropic Diffusion The code that was used to generate Figure 2 from the paper and Figure 2 and 3 from the supplement is a notebook in the folder `experiments/anisotropic_diffusion`. ## Data The training scripts assume that you have a `data` folder in `experiments`. ModelNet40 and ShapeNet download the datasets from a public repository. Instructions to download the data for human body shape segmentation, SHREC, and ScanObjectNN are given in the training scripts. ## Tests In the paper, we make statements about a number of properties of DeltaConv that are either a result of prior work or due to the implementation. We created a test suite to ensure that these properties hold for the implementation, along with unit tests for each module. For example: - Section 3.6, 3.7: Vector MLPs are equivariant to norm-preserving transformations, or coordinate-independent (rotations, reflections) - `test/nn/test_mlp.py` - `test/nn/test_nonlin.py` - Section 3.7: DeltaConv is coordinate-independent, a forward pass on a shape with one choice of bases leads to the same output and weight updates when run with different bases - `test/nn/test_deltaconv.py` - Introduction, section 3.2: The operators are robust to noise and outliers. - `test/geometry/test_grad_div.py` - Supplement, section 1: Vectors can be mapped between points with equation (15). - `test/geometry/test_grad_div.py` ## Citations Please cite our paper if this code contributes to an academic publication: ```bib @Article{Wiersma2022DeltaConv, author = {Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt}, journal = {Transactions on Graphics}, title = {DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds}, year = {2022}, month = jul, number = {4}, volume = {41}, doi = {10.1145/3528223.3530166}, publisher = {ACM}, } ``` The farthest point sampling code relies on Geometry Central: ```bib @misc{geometrycentral, title = {geometry-central}, author = {Nicholas Sharp and Keenan Crane and others}, note = {www.geometry-central.net}, year = {2019} } ``` And we make use of PyG (and underlying packages) to load point clouds, compute sparse matrix products, and compute nearest neighbors: ```bib @inproceedings{Fey/Lenssen/2019, title={Fast Graph Representation Learning with {PyTorch Geometric}}, author={Fey, Matthias and Lenssen, Jan E.}, booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds}, year={2019}, } ```


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl deltaconv-1.0.2:

    pip install deltaconv-1.0.2.whl


نصب پکیج tar.gz deltaconv-1.0.2:

    pip install deltaconv-1.0.2.tar.gz