معرفی شرکت ها


delicatessen-1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Generalized M-Estimation
ویژگی مقدار
سیستم عامل -
نام فایل delicatessen-1.1
نام delicatessen
نسخه کتابخانه 1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Paul Zivich
ایمیل نویسنده zivich.5@gmail.com
آدرس صفحه اصلی https://github.com/pzivich/Deli
آدرس اینترنتی https://pypi.org/project/delicatessen/
مجوز MIT
![delicatessen](docs/images/delicatessen_header.png) # Delicatessen ![tests](https://github.com/pzivich/Delicatessen/actions/workflows/python-package.yml/badge.svg) [![version](https://badge.fury.io/py/delicatessen.svg)](https://badge.fury.io/py/delicatessen) [![docs](https://readthedocs.org/projects/deli/badge/?version=latest)](https://deli.readthedocs.io/en/latest/?badge=latest) [![Downloads](https://pepy.tech/badge/delicatessen/month)](https://pepy.tech/project/delicatessen) The one-stop sandwich (variance) shop in Python. `delicatessen` is a Python 3.8+ library for the generalized calculus of M-estimation. **Citation**: Zivich PN, Klose M, Cole SR, Edwards JK, & Shook-Sa BE. (2022). Delicatessen: M-Estimation in Python. *arXiv:2203.11300* [stat.ME] ## M-Estimation and Estimating Equations Here, we provide a brief overview of M-estimation theory. For a detailed introduction to M-estimation, see Chapter 7 of Boos & Stefanski (2013). M-estimation is a generalization of likelihood-based methods. *M-estimators* are solutions to estimating equations. To apply the M-estimator, we solve the estimating equations using observed data. This is similar to other approaches, but the key advantage of M-Estimators is estimation of the variance via the sandwich variance. While M-Estimation is a powerful tool, the derivatives and matrix algebra can quickly become unwieldy. This is where `delicatessen` comes in. `delicatessen` takes an array estimating equations and data, and solves for the parameter estimates, numerically approximates the derivatives, and does the matrix calculations. Therefore, M-estimators can be more widely adopted without by-hand calculations. We can let the computer do all the math for us. `delicatessen` also comes with a variety of built-in estimating equations. See the [delicatessen website](https://deli.readthedocs.io/en/latest/) for the full set of available estimating equations and how to use them. ## Installation ### Installing: You can install via `python -m pip install delicatessen` ### Dependencies: The dependencies are: `numpy`, `scipy` To replicate the tests located in `tests/`, you will additionally need to install: `panda`, `statsmodels`, and `pytest` While versions of `delicatessen` prior to v1.0 were compatible with older versions of Python 3 and NumPy and SciPy, the v1.0+ releases are only available for Python 3.8+ with NumPy v1.18.5+ and SciPy v1.9.0. This change was made to use a better numerical approximation procedure for the derivative. If you want to use with older versions of those packages or older versions of Python, install v0.6 instead. ## Getting started Below is a simple demonstration of calculating the mean with `delicatessen` ```python import numpy as np y = np.array([1, 2, 3, 1, 4, 1, 3, -2, 0, 2]) ``` Loading the M-estimator functionality, building the estimating equation, and printing the results to the console ```python from delicatessen import MEstimator def psi(theta): return y - theta[0] estr = MEstimator(psi, init=[0, ]) estr.estimate() print(estr.theta) # Estimate of the mean print(estr.variance) # Variance estimator for the mean ``` For further details on using `delicatessen`, see the full documentation and worked examples available at [delicatessen website](https://deli.readthedocs.io/en/latest/) or in the examples folder. ## References Boos DD, & Stefanski LA. (2013). M-estimation (estimating equations). In Essential Statistical Inference (pp. 297-337). Springer, New York, NY. Stefanski LA, & Boos DD. (2002). The calculus of M-estimation. *The American Statistician*, 56(1), 29-38. Zivich PN, Klose M, Cole SR, Edwards JK, & Shook-Sa BE. (2022). Delicatessen: M-Estimation in Python. *arXiv preprint arXiv:2203.11300*.


نیازمندی

مقدار نام
>=1.18.5 numpy
>=1.9.0 scipy


نحوه نصب


نصب پکیج whl delicatessen-1.1:

    pip install delicatessen-1.1.whl


نصب پکیج tar.gz delicatessen-1.1:

    pip install delicatessen-1.1.tar.gz