معرفی شرکت ها


delanalysis-0.2.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An analysis algoritm that is a companion to NGS-Barcode-Count
ویژگی مقدار
سیستم عامل -
نام فایل delanalysis-0.2.3
نام delanalysis
نسخه کتابخانه 0.2.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Rory Coffey
ایمیل نویسنده coffeyrt@gmail.com
آدرس صفحه اصلی https://github.com/Roco-scientist/DEL-Analysis
آدرس اینترنتی https://pypi.org/project/delanalysis/
مجوز -
# DEL-Analysis DNA encoded library analysis. This is companion software to <a href=https://github.com/Roco-scientist/NGS-Barcode-Count>NGS-Barcode-Count</a> for outputing analysis and graphs. ## Table of Contents <ul> <li><a href=#installation>Installation</a></li> <li><a href=#files-needed>Files Needed</a></li> <li><a href=#run>Run</a></li> <li><a href=#methods>Methods</a></li> </ul> ## Installation Anaconda python required for the instructions below ### Create a del environment and activate ``` conda create -n del python=3.9 conda activate del ``` ### Install From pypl:<br> ``` pip install delanalysis ``` From source:<br> ``` git clone https://github.com/Roco-scientist/DEL-Analysis.git cd DEL-Analysis pip install --use-feature=in-tree-build . ``` ## Files Needed Output files from NGS-Barcode-Count ## Run ### Start ``` conda activate del python ``` ### Working with merged data output All code below is within python<br><br> ``` import delanalysis # Import merged data output from NGS-Barcode-Count. This creates a DelDataMerged object merged_data = delanalysis.read_merged("test_counts.all.csv") # zscore, then quantile_normalize, then subtract background which is 'test_1' merged_data_transformed = merged_data.binomial_zscore().subtract_background(background_name="test_1") # Create a 2d comparison graph between 'test_2' and 'test_3' in the current directory and with a low end cutoff of 4 merged_data_transformed.comparison_graph(x_sample="test_2", y_sample="test_3", out_dir="./", min_score=4) # Creates a DelDataSample object from a single sample from the merged object test_2_data_transformed = merged_data_transformed.sample_data(sample_name="test_2") # Create a 3d graph with each axis being a barcode within the current directory and a low end cutoff of 4 test_2_data_transformed.graph_3d(out_dir="./", min_score=4) # Create a 2d graph within the current directory and a low end cutoff of 4 test_2_data_transformed.graph_2d(out_dir="./", min_score=4) # Can all be done in one line delanalysis.read_merged("test_counts.all.csv").binomial_zscore().subtract_background("test_1").sample_data("test_2").graph_3d("./", 4) # Create a comparison graph for tri, di, and mono synthons full = read_merged("../../test_del/test.all.csv") double = read_merged("../../test_del/test.all.Double.csv") single = read_merged("../../test_del/test.all.Single.csv") full_double = full.concat(double) full_double_single = full_double.concat(single) full_double_single_zscore = full_double_single.binomial_zscore_sample_normalized() full_double_single_zscore.subtract_background("test_1", inplace=True) full_double_single_zscore.comparison_graph("test_2", "test_3", "../../test_del/", 0.002) ``` ### Working with sample data output All code below is within python<br><br> ``` import delanalysis # Import sample data output from NGS-Barcode-Count. This creates a DelDataSample object sample_data = delanalysis.read_sample("test_1.csv") # zscore sample_data_zscore = sample_data.binomial_zscore() # Create a 3d graph with each axis being a barcode within the current directory and a low end cutoff of 4 sample_data_zscore.graph_3d(out_dir="./", min_score=4) # Create a 2d graph within the current directory and a low end cutoff of 4 sample_data_zscore.graph_2d(out_dir="./", min_score=4) ``` ### Resulting graphs The actual graphs will be interactive HTML graphs with hover data etc. <br><br> From comparison_graph()<br> ![ "delanalysis.comparison_graph()" ](./comparison_graph.png)<br> From graph_2d()<br> ![ "delanalysis.graph_2d()" ](./2d_graph.png)<br> From graph_3d()<br> ![ "delanalysis.graph_3d()" ](./3d_graph.png)<br> ## Methods ### delanalysis methods to import data <table> <tr> <th>Method</th> <th>Description</th> </tr> <tr> <td>read_merged(file_path)</td> <td>Creates a DelDataMerged object which can use the methods below</td> </tr> <tr> <td>read_sample(file_path)</td> <td>Creates a DelDataSample object which can use the methods below</td> </tr> <tr> <td></td> <td></td> </tr> </table> ### Common to merged data and sample data Used with either delanalysis.read_merged() or delanalysis.read_sample() objects <table> <tr> <th>Method</th> <th>Description</th> </tr> <tr> <td>building_block_columns()</td> <td>returns all column names which contain building block info</td> </tr> <tr> <td>data_columns()</td> <td>returns all column names which contain data</td> </tr> <tr> <td>data_descriptor()</td> <td>Returns data_type with underscores for file output</td> </tr> <tr> <td>data_type</td> <td>The data type of the DelData</td> </tr> <tr> <td>to_csv(out_file)</td> <td>Writes the DelData object to the out_file in csv format</td> </tr> <tr> <td>zscore(inplace=False)</td> <td>z-scores the data</td> </tr> <tr> <td>binomial_zscore(del_library_size, inplace=False)</td> <td>z-scores the data using the binomial distribution standard deviation</td> </tr> <tr> <td>binomial_zscore_sample_normalized(del_library_size, inplace=False)</td> <td>z-scores the data using the binomial distribution standard deviation and normalizes by sqrt(n). See: <a href=https://pubs.acs.org/doi/10.1021/acscombsci.8b00116>Quantitative Comparison of Enrichment...</a></td> </tr> <tr> <td>enrichment(del_library_size, inplace=False)</td> <td>count * library_size/ total_counts</td> </tr> <tr> <td>update_synthon_numbers(unique_synthons_per_barcode: List[int])</td> <td>The number of unique synthons is inferred by the total uniques found in the data. These numbers can be updated with this function</td> </tr> </table> ### Merged data Used with delanalysis.read_merged() which creates a DelDataMerged object <table> <tr> <th>Method</th> <th>Description</th> </tr> <tr> <td>quantile_normalize(inplace=False)</td> <td>quantile normalizes the data</td> </tr> <tr> <td>sample_enrichment(inplace=False)</td> <td>(sample_count/total_sample_count)/(non_sample_count/total_non_sample_count). Still experimental as if the count only happens in one sample, a div 0 error occurs</td> </tr> <tr> <td>subtract_background(background_name, inplace=False)</td> <td>subtracts the background_name sample from all other samples</td> </tr> <tr> <td>reduce(min_score, inplace=False)</td> <td>Removes all rows from the data where no samples have a score above the min_score</td> </tr> <tr> <td>merge(deldata, inplace=False)</td> <td>Merges DelDataMerged data into the current DelDataMerged object</td> </tr> <tr> <td>sample_data(sample_name)</td> <td>Returns a DelDataSample object from the DelDataMerged object. This is needed for the 2d and 3d graph</td> </tr> <tr> <td>select_samples(sample_names: List, inplace=False)</td> <td>Reduces the data to the listed sample names</td> </tr> <tr> <td>comparison_graph(x_sample, y_sample, out_dir, min_score=0)</td> <td>Outputs a comparison graph of x_sample vs y_sample names.</td> </tr> </table> ### Sample data Used with delanalysis.read_sample() which creates a DelDataSample object <table> <tr> <th>Method</th> <th>Description</th> </tr> <tr> <td>reduce(min_score, inplace=False)</td> <td>reduces the data to only data greater than the min_score</td> </tr> <tr> <td>max_score()</td> <td>Returns the maximum score within the data</td> </tr> <tr> <td>data_column()</td> <td>Returns the data column name</td> </tr> <tr> <td>graph_2d(out_dir, min_score=0)</td> <td>Produces two subplot 2d graphs for the different barcodes of a DelDataSample.</td> </tr> <tr> <td>graph_3d(out_dir, min_score=0)</td> <td>Produces 3d graphs for the different barcodes of a DelDataSample.</td> </tr> </table>


نیازمندی

مقدار نام
==1.2 pandas
==5.3 plotly
==1.6 scipy


زبان مورد نیاز

مقدار نام
~=3.9 Python


نحوه نصب


نصب پکیج whl delanalysis-0.2.3:

    pip install delanalysis-0.2.3.whl


نصب پکیج tar.gz delanalysis-0.2.3:

    pip install delanalysis-0.2.3.tar.gz