معرفی شرکت ها


defaults-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل defaults-0.3.0
نام defaults
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Michael Petrochuk
ایمیل نویسنده petrochukm@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/defaults/
مجوز MIT
<p align="center"><img width="544px" src="logo.svg" /></p> <h3 align="center">Extensible and Fault-Tolerant Hyperparameter Management</h3> HParams is a thoughtful approach to configuration management for machine learning projects. It enables you to externalize your hyperparameters into a configuration file. In doing so, you can reproduce experiments, iterate quickly, and reduce errors. **Features:** - Approachable and easy-to-use API - Battle-tested over three years - Fast with little to no runtime overhead (< 3e-05 seconds) per configured function - Robust to most use cases with 100% test coverage and 75 tests - Lightweight with only one dependency ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/hparams.svg?style=flat-square) [![Codecov](https://img.shields.io/codecov/c/github/PetrochukM/HParams/master.svg?style=flat-square)](https://codecov.io/gh/PetrochukM/HParams) [![Downloads](http://pepy.tech/badge/hparams)](http://pepy.tech/project/hparams) [![Build Status](https://img.shields.io/travis/PetrochukM/HParams/master.svg?style=flat-square)](https://travis-ci.org/PetrochukM/HParams) [![License: MIT](https://img.shields.io/badge/License-MIT-brightgreen.svg?style=flat-square)](https://opensource.org/licenses/MIT) [![Twitter: PetrochukM](https://img.shields.io/twitter/follow/MPetrochuk.svg?style=social)](https://twitter.com/MPetrochuk) _Logo by [Chloe Yeo](http://www.yeochloe.com/), Corporate Sponsorship by [WellSaid Labs](https://wellsaidlabs.com/)_ ## Installation Make sure you have Python 3. You can then install `hparams` using `pip`: ```bash pip install hparams ``` Install the latest code via: ```bash pip install git+https://github.com/PetrochukM/HParams.git ``` ## Oops 🐛 With HParams, you will avoid common but needless hyperparameter mistakes. It will throw a warning or error if: - A hyperparameter is overwritten. - A hyperparameter is declared but not set. - A hyperparameter is set but not declared. - A hyperparameter type is incorrect. Finally, HParams is built with developer experience in mind. HParams includes 13 errors and 6 warnings to help catch and resolve issues quickly. ## Examples Add HParams to your project by following one of these common use cases: ### Configure Training 🤗 Configure your training run, like so: ```python # main.py from hparams import configurable, add_config, HParams, HParam from typing import Union @configurable def train(batch_size: int = HParam()): pass class Model(): @configurable def __init__(self, hidden_size=HParam(int), dropout=HParam(float)): pass add_config({ 'main': { 'train': HParams(batch_size=32), 'Model.__init__': HParams(hidden_size=1024, dropout=0.25), }}) ``` HParams supports optional configuration typechecking to help you find bugs! 🐛 ### Set Defaults Configure PyTorch and Tensorflow defaults to match via: ```python from torch.nn import BatchNorm1d from hparams import configurable, add_config, HParams # NOTE: `momentum=0.01` to match Tensorflow defaults BatchNorm1d.__init__ = configurable(BatchNorm1d.__init__) add_config({ 'torch.nn.BatchNorm1d.__init__': HParams(momentum=0.01) }) ``` Configure your random seed globally, like so: ```python # config.py import random from hparams import configurable, add_config, HParams random.seed = configurable(random.seed) add_config({'random.seed': HParams(a=123)}) ``` ```python # main.py import config import random random.seed() ``` ### CLI Experiment with hyperparameters through your command line, for example: ```console foo@bar:~$ file.py --torch.optim.adam.Adam.__init__ 'HParams(lr=0.1,betas=(0.999,0.99))' ``` ```python import sys from torch.optim import Adam from hparams import configurable, add_config, parse_hparam_args Adam.__init__ = configurable(Adam.__init__) parsed = parse_hparam_args(sys.argv[1:]) # Parse command line arguments add_config(parsed) ``` ### Hyperparameter optimization Hyperparameter optimization is easy to-do, check this out: ```python import itertools from torch.optim import Adam from hparams import configurable, add_config, HParams Adam.__init__ = configurable(Adam.__init__) def train(): # Train the model and return the loss. pass for betas in itertools.product([0.999, 0.99, 0.9], [0.999, 0.99, 0.9]): add_config({Adam.__init__: HParams(betas=betas)}) # Grid search over the `betas` train() ``` ### Track Hyperparameters Easily track your hyperparameters using tools like [Comet](comet.ml). ```python from comet_ml import Experiment from hparams import get_config experiment = Experiment() experiment.log_parameters(get_config()) ``` ### Multiprocessing: Partial Support Export a Python `functools.partial` to use in another process, like so: ```python from hparams import configurable, HParam @configurable def func(hparam=HParam()): pass partial = func.get_configured_partial() ``` With this approach, you don't have to transfer the global state to the new process. To transfer the global state, you'll want to use `get_config` and `add_config`. ## Docs 📖 The complete documentation for HParams is available [here](./DOCS.md). Learn more about related projects to HParams [here](./RELATED.md). ## Contributing We've released HParams because a lack of hyperparameter management solutions. We hope that other people can benefit from the project. We are thankful for any contributions from the community. ### Contributing Guide Read our [contributing guide](https://github.com/PetrochukM/HParams/blob/master/CONTRIBUTING.md) to learn about our development process, how to propose bugfixes and improvements, and how to build and test your changes to HParams. ## Authors - [Michael Petrochuk](https://github.com/PetrochukM/) — Developer - [Chloe Yeo](http://www.yeochloe.com/) — Logo Design ## Citing If you find HParams useful for an academic publication, then please use the following BibTeX to cite it: ```latex @misc{hparams, author = {Petrochuk, Michael}, title = {HParams: Hyperparameter management solution}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/PetrochukM/HParams}}, } ```


نیازمندی

مقدار نام
- typeguard


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl defaults-0.3.0:

    pip install defaults-0.3.0.whl


نصب پکیج tar.gz defaults-0.3.0:

    pip install defaults-0.3.0.tar.gz