معرفی شرکت ها


deepwave-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Wave propagation modules for PyTorch
ویژگی مقدار
سیستم عامل -
نام فایل deepwave-0.0.9
نام deepwave
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alan Richardson
ایمیل نویسنده alan@ausargeo.com
آدرس صفحه اصلی https://github.com/ar4/deepwave
آدرس اینترنتی https://pypi.org/project/deepwave/
مجوز -
# Deepwave [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3829886.svg)](https://doi.org/10.5281/zenodo.3829886) Deepwave provides wave propagation modules for PyTorch, for applications such as seismic imaging/inversion. You can use it to perform forward modelling and backpropagation, so it can simulate wave propagation to generate synthetic data, invert for the scattering potential (RTM/LSRTM), other model parameters (FWI), initial wavefields, or source wavelets. You can use it to integrate wave propagation into a larger chain of operations with end-to-end forward and backpropagation. Deepwave enables you to easily experiment with your own objective functions or functions that generate the inputs to the propagator, letting PyTorch's automatic differentiation do the hard work of calculating how to backpropagate through them. [The documentation](https://ausargeo.com/deepwave) contains examples and instructions on how to install and use Deepwave. ## Features - Supports the 2D constant density acoustic / scalar wave equation (regular and Born modelling) and 2D elastic wave equation (P-SV) - Runs on CPUs and appropriate GPUs - The gradient of all outputs (final wavefields and receiver data) can be calculated with respect to the model parameters (wavespeed, scattering potential, etc.), initial wavefields, and source amplitudes - Uses the [Pasalic and McGarry](https://doi.org/10.1190/1.3513453) PML for accurate absorbing boundaries in the scalar wave propagator - Uses [C-PML](https://doi.org/10.3970/cmes.2008.037.274) with the [W-AFDA](https://doi.org/10.1023/A:1019866422821) free-surface method for the elastic wave propagator - The PML width for each edge can be set independently, allowing a free surface (no PML) on any side - Finite difference accuracy can be set by the user - A region of the model around the sources and receivers currently being propagated can be automatically extracted to avoid the unnecessary computation of propagation in distant parts of the model ## Quick Example In a few lines you can make a velocity model, propagate a wave from a source in the top left corner to a receiver in the top right, calculate an objective function, and backpropagate to obtain its gradient with respect to the velocity. ```python import torch import deepwave import matplotlib.pyplot as plt v = 1500 * torch.ones(100, 100) v[50:] = 2000 v.requires_grad_() out = deepwave.scalar( v, grid_spacing=4, dt=0.004, source_amplitudes=deepwave.wavelets.ricker(25, 200, 0.004, 0.06).reshape(1, 1, -1), source_locations=torch.tensor([[[0, 0]]]), receiver_locations=torch.tensor([[[0, 99]]]) ) (out[-1]**2).sum().backward() _, ax = plt.subplots(1, 3, figsize=(9, 3)) ax[0].imshow(v.detach()) ax[0].set_title("Velocity model") ax[1].plot(out[-1].detach().flatten()) ax[1].set_title("Receiver data") ax[2].imshow(v.grad.detach(), vmin=-1e-5, vmax=1e-5) ax[2].set_title("Gradient") ``` ![Output from quick example](quick_example.jpg) There are more examples in [the documentation](https://ausargeo.com/deepwave). ## Citing If you would like to cite Deepwave, I suggest: ```bibtex @software{richardson_alan_2023, author = {Richardson, Alan}, title = {Deepwave}, month = apr, year = 2023, publisher = {Zenodo}, version = {v0.0.18}, doi = {10.5281/zenodo.7278382}, url = {https://doi.org/10.5281/zenodo.7278382} } ```


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl deepwave-0.0.9:

    pip install deepwave-0.0.9.whl


نصب پکیج tar.gz deepwave-0.0.9:

    pip install deepwave-0.0.9.tar.gz