معرفی شرکت ها


deepview-predict-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cross-GPU performance predictions for PyTorch neural network training.
ویژگی مقدار
سیستم عامل -
نام فایل deepview-predict-0.1.0
نام deepview-predict
نسخه کتابخانه 0.1.0
نگهدارنده ['CentML']
ایمیل نگهدارنده ['support@centml.ai']
نویسنده CentML
ایمیل نویسنده support@centml.ai
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/deepview-predict/
مجوز Apache-2.0
# DeepView.Predict [![License](https://img.shields.io/badge/license-Apache--2.0-green?style=flat)](https://github.com/CentML/habitat/blob/main/LICENSE) [![Maintainability](https://api.codeclimate.com/v1/badges/fbb68badd0c0599f1843/maintainability)](https://codeclimate.com/github/CentML/DeepView.Predict/maintainability) [![Test Coverage](https://api.codeclimate.com/v1/badges/fbb68badd0c0599f1843/test_coverage)](https://codeclimate.com/github/CentML/DeepView.Predict/test_coverage) A Runtime-Based Computational Performance Predictor for Deep Neural Network Training - [Installation](#installation) - [Building from source](#build) - [Usage example](#getting-started) - [Development Environment Setup](#dev-setup) - [Release process](#release-process) - [Release history](#release-history) - [License](#license) - [Research paper](#paper) - [Contributing](#contributing) DeepView.Predict is a tool that predicts a deep neural network's training iteration execution time on a given GPU. It currently supports PyTorch. To learn more about how DeepView.Predict works, please see our [research paper](https://arxiv.org/abs/2102.00527). <h2 id="installation">Installation</h2> To run DeepView.Predict, you need: - [Python 3.6+](https://www.python.org/) - [Pytorch 1.1.0+](https://pytorch.org/) - A system equiped with an Nvidia GPU with properly configured CUDA Currently, we have predictors for the following Nvidia GPUs: | GPU | Generation | Memory | Mem. Type | SMs | | ---------- |:-----------:| ------:| :-------: | :-: | | P4000 | Pascal | 8 GB | GDDR5 | 14 | | P100 | Pascal | 16 GB | HBM2 | 56 | | V100 | Volta | 16 GB | HBM2 | 80 | | 2070 | Turing | 8 GB | GDDR6 | 36 | | 2080Ti | Turing | 11 GB | GDDR6 | 68 | | T4 | Turing | 16 GB | GDDR6 | 40 | | 3090 | Ampere | 24 GB | GDDR6X | 82 | | A100 | Ampere | 40 GB | HBM2 | 108 | | A40 | Ampere | 48 GB | GDDR6 | 84 | | A4000 | Ampere | 16 GB | GDDR6 | 48 | | 4000 | Turing | 8 GB | GDDR6 | 36 | <h2 id="building-locally">Building locally</h2> ### Installing from pip Install via pip with the following command ```bash pip install deepview-predict ``` ### Installing from source 1. Install CUPTI CUPTI is a profiling interface required by DeepView.Predict. Select your version of CUDA [here](https://developer.nvidia.com/cuda-toolkit-archive) and follow the instructions to add NVIDIA's repository. Then, install CUPTI with: ```bash sudo apt-get install cuda-cupti-xx-x ``` where `xx-x` represents the version of CUDA you have installed. Alternatively, if you do not have root access on your machine, you can use `conda` to install CUPTI. Select your version of CUDA [here](https://anaconda.org/nvidia/cuda-cupti) and follow the instructions. For example if you have CUDA 11.6.0, you can install CUPTI with: ```bash conda install -c "nvidia/label/cuda-11.6.0" cuda-cupti ``` After installing CUPTI, add `$CONDA_HOME/extras/CUPTI/lib64/` to `LD_LIBRARY_PATH` to ensure the library is linked. 2. Install CMake 3.17+. - Note that CMake 3.24.0 and 3.24.1 has a bug that breaks DeepView.Predict as it is not able to find the CUPTI directory and you should not use those versions - [https://gitlab.kitware.com/cmake/cmake/-/merge_requests/7608/diffs](https://gitlab.kitware.com/cmake/cmake/-/merge_requests/7608/diffs) - Run the following commands to download and install a precompiled version of CMake 3.24.2 ```bash wget https://github.com/Kitware/CMake/releases/download/v3.24.2/cmake-3.24.2-linux-x86_64.sh chmod +x cmake-3.24.2-linux-x86_64.sh mkdir /opt/cmake sh cmake-3.24.2-linux-x86_64.sh --prefix=/opt/cmake --skip-license ln -s /opt/cmake/bin/cmake /usr/local/bin/cmake ``` - You can verify the version of CMake you installed with the following command ```bash cmake --version ``` 3. Install [Git Large File Storage](https://git-lfs.github.com/) 4. Clone the DeepView.Predict package ```bash git clone https://github.com/CentML/DeepView.Predict cd DeepView.Predict ``` 5. Get the pre-trained models used by DeepView.Predict ```bash git submodule init && git submodule update git lfs pull ``` 6. Finally build DeepView.Predict with the following command ```bash ./analyzer/install-dev.sh ``` <h2 id="building-with-docker">Building with Docker</h2> DeepView.Predict has been tested to work on the latest version of [NVIDIA NGC PyTorch containers](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch). 1. To build DeepView.Predict with Docker, first run the NGC container where ```bash docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:XX.XX-py3 ``` 2. Inside the container, clone the repository then build and install DeepView.Predict Python package: ```bash git clone --recursive https://github.com/CentML/DeepView.Predict ./habitat/analyzer/install-dev.sh ``` **Note:** DeepView.Predict needs access to your GPU's performance counters, which requires special permissions if you are running with a recent driver (418.43 or later). If you encounter a `CUPTI_ERROR_INSUFFICIENT_PRIVILEGES` error when running DeepView.Predict, please follow the instructions [here](https://developer.nvidia.com/ERR_NVGPUCTRPERM) and in [issue #5](https://github.com/geoffxy/habitat/issues/5). <h2 id="usage-example">Usage example</h2> You can verify your DeepView.Predict installation by running the simple usage example: ```python # example.py import habitat import torch import torchvision.models as models # Define model and sample inputs model = models.resnet50().cuda() image = torch.rand(8, 3, 224, 224).cuda() # Measure a single inference tracker = habitat.OperationTracker(device=habitat.Device.RTX2080Ti) with tracker.track(): out = model(image) trace = tracker.get_tracked_trace() print("Run time on source:", trace.run_time_ms) # Perform prediction to a single target device pred = trace.to_device(habitat.Device.V100) print("Predicted time on V100:", pred.run_time_ms) ``` ```bash python3 example.py ``` See [experiments/run_experiment.py](https://github.com/CentML/DeepView.Predict/tree/main/experiments) for other examples of DeepView.Predict usage. <h2 id="release-history">Release History</h2> See [Releases](https://github.com/UofT-EcoSystem/habitat/releases) <h2 id="license">License</h2> The code in this repository is licensed under the Apache 2.0 license (see `LICENSE` and `NOTICE`), with the exception of the files mentioned below. This software contains source code provided by NVIDIA Corporation. These files are: - The code under `cpp/external/cupti_profilerhost_util/` (CUPTI sample code) - `cpp/src/cuda/cuda_occupancy.h` The code mentioned above is licensed under the [NVIDIA Software Development Kit End User License Agreement](https://docs.nvidia.com/cuda/eula/index.html). We include the implementations of several deep neural networks under `experiments/` for our evaluation. These implementations are copyrighted by their original authors and carry their original licenses. Please see the corresponding `README` files and license files inside the subdirectories for more information. <h2 id="paper">Research Paper</h2> DeepView.Predict began as a research project in the [EcoSystem Group](https://www.cs.toronto.edu/ecosystem) at the [University of Toronto](https://cs.toronto.edu). The accompanying research paper appeared in the proceedings of [USENIX ATC'21](https://www.usenix.org/conference/atc21/presentation/yu). If you are interested, you can read a preprint of the paper [here](https://arxiv.org/abs/2102.00527). If you use DeepView.Predict in your research, please consider citing our paper: ```bibtex @inproceedings{habitat-yu21, author = {Yu, Geoffrey X. and Gao, Yubo and Golikov, Pavel and Pekhimenko, Gennady}, title = {{Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training}}, booktitle = {{Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC'21)}}, year = {2021}, } ``` <h2 id="contributing">Contributing</h2> Check out [CONTRIBUTING.md](https://github.com/CentML/habitat/blob/main/CONTRIBUTING.md) for more information on how to help with Habitat.


نیازمندی

مقدار نام
- pyyaml
>=1.4.0 torch
>=1.1.2 pandas
>=4.49.0 tqdm
==11.7.101 nvidia-cuda-cupti-cu11
==11.7.99 nvidia-cuda-runtime-cu11


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl deepview-predict-0.1.0:

    pip install deepview-predict-0.1.0.whl


نصب پکیج tar.gz deepview-predict-0.1.0:

    pip install deepview-predict-0.1.0.tar.gz