معرفی شرکت ها


deeptoolkit-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A deep learning library containing implementations of popular algorithms and extensions to TensorFlow and Keras.
ویژگی مقدار
سیستم عامل -
نام فایل deeptoolkit-0.2.1
نام deeptoolkit
نسخه کتابخانه 0.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Amogh Joshi
ایمیل نویسنده joshi.amoghn@gmail.com
آدرس صفحه اصلی https://github.com/amogh7joshi/deeptoolkit
آدرس اینترنتی https://pypi.org/project/deeptoolkit/
مجوز MIT
# DeepToolKit ![PyPI](https://img.shields.io/pypi/v/deeptoolkit) [![Downloads](https://pepy.tech/badge/deeptoolkit)](https://pepy.tech/project/deeptoolkit) ![GitHub](https://img.shields.io/github/license/amogh7joshi/deeptoolkit) ![Travis (.com)](https://img.shields.io/travis/com/amogh7joshi/deeptoolkit?label=Travis%20CI) [![Build Status](https://dev.azure.com/joshiamoghn/deeptoolkit/_apis/build/status/amogh7joshi.deeptoolkit?branchName=master)](https://dev.azure.com/joshiamoghn/deeptoolkit/_build/latest?definitionId=1&branchName=master) ![CodeQL](https://github.com/amogh7joshi/deeptoolkit/workflows/CodeQL/badge.svg) DeepToolKit provides implementations of popular machine learning algorithms, extensions to existing deep learning pipelines using TensorFlow and Keras, and convenience utilities to speed up the process of implementing, training, and testing deep learning models. In addition, DeepToolKit includes an inbuilt computer vision module containing implementations of facial detection and image processing algorithms. ## Installation ### Python Package DeepToolKit can be installed directly from the command line: ```shell script pip install deeptoolkit ``` You can then work with it either by importing the library as a whole, or by importing the functionality you need from the relevant submodules. ```python # Complete library import. import deeptoolkit as dtk # Module and function imports. from deeptoolkit.data import plot_data_cluster from deeptoolkit.blocks import SeparableConvolutionBlock from deeptoolkit.losses import CategoricalFocalLoss ``` ### From Source If you want to install DeepToolKit directly from source, (i.e. for local development), then first install the git source: ```shell script git clone https://github.com/amogh7joshi/deeptoolkit.git ``` Then install system requirements and activate the virtual environment. A Makefile is included for installation: ```shell script make install ``` ## Features DeepToolKit provides a number of features to either use standalone or integrated in a deep learning model construction pipeline. Below is a high-level list of features in the module. Proper documentation is under construction. ### Model Architecture Blocks: `deeptoolkit.blocks` - Generic model architecture blocks, including convolution and depthwise separable convolution blocks, implemented as `tf.keras.layers.Layer` objects so you can directly use them in a Keras model. - Applied model architecture blocks, including squeeze and excitation blocks and ResNet identity blocks. **For Example**: ```python from tensorflow.keras.models import Model from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import Input, Dense, Flatten from deeptoolkit.blocks import ConvolutionBlock # Construct a Keras Functional model like normal. inp = Input((256, 256, 3)) x = ConvolutionBlock(32, kernel_size = (3, 3), activation = 'relu')(inp) x = MaxPooling2D(pool_size = (2, 2))(x) x = ConvolutionBlock(16, kernel_size = (3, 3), activation = 'relu')(x) x = MaxPooling2D(pool_size = (2, 2))(x) x = Flatten()(x) x = Dense(1024, activation = 'relu')(x) x = Dense(10, activation = 'relu')(x) model = Model(inp, x) ``` ### Loss Functions: `deeptoolkit.losses` - Custom loss functions including binary and categorical focal loss, built as `tf.keras.losses.Loss` objects so you can use them in a Keras model training pipeline as well. **For Example**: ```python from tensorflow.keras.optimizers import Adam from deeptoolkit.losses import BinaryFocalLoss # Using the model from the above example. model.compile( optimizer = Adam(), loss = BinaryFocalLoss(), metrics = ['accuracy'] ) ``` ### Data Processing and Visualization: `deeptoolkit.data` - Data preprocessing, including splitting data into train, validation, and test sets, and shuffling datasets while keeping data-label mappings intact. - Data visualization, including cluster visualizations. **For Example:** ```python import numpy as np from deeptoolkit.data import train_val_test_split X = np.random.random(100) y = np.random.random(100) X_train, X_val, X_test, y_train, y_val, y_test = train_val_test_split(X, y, split = [0.6, 0.2, 0.2]) ``` ### Model Evaluation: `deeptoolkit.evaluation` - Model evaluation resources, including visualization of model training metrics over time. ### Computer Vision: `deeptoolkit.vision` - A pre-built facial detection model: `deeptoolkit.vision.FacialDetector`. A large number of modern computer vision algorithms include a facial detection component, and DeepToolKit's facial detection module provides fast and accurate face detection using OpenCV's DNN implementation. To use it, simply execute the following: ```python import cv2 from deeptoolkit.vision import FacialDetector # Initialize detector. detector = FacialDetector() # Detect face from image path and save image to path. detector.detect_face('image/path', save = 'image/save/path') # Detect face from existing image and continue to use it. image = cv2.imread('image/path') annotated_image = detector.detect_face(image) ``` ![Facial Detection Cartoon](examples/vision-example-image.png) ## License All code in this repository is licensed under the [MIT License](https://github.com/amogh7joshi/deeptoolkit/blob/master/LICENSE). ## Issue Reporting If you notice any issues or bugs in the library, please create an issue under the issues tab. To get started and for more information, see the [issue templates](https://github.com/amogh7joshi/deeptoolkit/tree/master/.github/ISSUE_TEMPLATE).


نحوه نصب


نصب پکیج whl deeptoolkit-0.2.1:

    pip install deeptoolkit-0.2.1.whl


نصب پکیج tar.gz deeptoolkit-0.2.1:

    pip install deeptoolkit-0.2.1.tar.gz