معرفی شرکت ها


deeptech-20210210


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A library to help writing ai functions with ease.
ویژگی مقدار
سیستم عامل -
نام فایل deeptech-20210210
نام deeptech
نسخه کتابخانه 20210210
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Michael Fuerst
ایمیل نویسنده mail@michaelfuerst.de
آدرس صفحه اصلی https://github.com/penguinmenac3/deeptech
آدرس اینترنتی https://pypi.org/project/deeptech/
مجوز MIT
# Deeptech > A library that helps with writing ai functions fast. It ships with a full [Documentation](docs/README.md) of its API and [Examples](deeptech/examples). ## Getting Started Please make sure you have pytorch installed properly as a first step. ```bash pip install deeptech ``` Then follow one of the [examples](deeptech/examples) or check out the [api documentation](docs/README.md). ## Design Principles The api builds on three core parts: Data, Model or Training. Some parts which are considered core functionality that is shared among them is in the core package. * **Data** is concerned about loading and preprocessing the data for training, evaluation and deployment. * **Model** is concerned with implementing the model. Everything required for the forward pass of the model is here. * **Training** contains all required for training a model on data. This includes loss, metrics, optimizers and trainers. * *Core* contains functionality that is shared across model, data and training. ## Tutorials & Examples Starting with tutorials and examples is usually easiest. Simple Fashion MNIST Examples: * [Fasion MNIST: Simple](deeptech/examples/mnist_simple.py) * [Fasion MNIST: Custom Model](deeptech/examples/mnist_custom_model.py) * [Fasion MNIST: Custom Loss](deeptech/examples/mnist_custom_loss.py) * **TODO** [Fasion MNIST: Custom Optimizer](deeptech/examples/mnist_custom_optimizer.py) * [Fasion MNIST: Custom Dataset](deeptech/examples/mnist_custom_dataset.py) ### Fashion MNIST Here is the simplest mnist example, it is so short it can be part of the main readme. ```python from deeptech.data.datasets import FashionMNISTDataset from deeptech.model.models import ImageClassifierSimple from deeptech.training.trainers import SupervisedTrainer from deeptech.training.losses import SparseCrossEntropyFromLogits from deeptech.training.optimizers import smart_optimizer from deeptech.core import Config, cli from torch.optim import SGD class FashionMNISTConfig(Config): def __init__(self, training_name, data_path, training_results_path): super().__init__(training_name, data_path, training_results_path) # Config of the data self.data_dataset = FashionMNISTDataset # Config of the model self.model_model = ImageClassifierSimple self.model_conv_layers = [32, 32, 32] self.model_dense_layers = [100] self.model_classes = 10 # Config for training self.training_loss = SparseCrossEntropyLossFromLogits self.training_optimizer = smart_optimizer(SGD) self.training_trainer = SupervisedTrainer self.training_epochs = 10 self.training_batch_size = 32 # Run with parameters parsed from commandline. # python -m deeptech.examples.mnist_simple --mode=train --input=Datasets --output=Results if __name__ == "__main__": cli.run(FashionMNISTConfig) ``` ## Contributing Currently there are no guidelines on how to contribute, so the best thing you can do is open up an issue and get in contact that way. In the issue we can discuss how you can implement your new feature or how to fix that nasty bug. To contribute, please fork the repositroy on github, then clone your fork. Make your changes and submit a merge request. ## Origin of the Name The name is a tribute to the [deeptech:ai hackathon](https://pioniergarage.de/deeptechai-der-ai-hackathon-in-karlsruhe/). When writing the library for fast, accessible ai development, I remembered how helpfull such a library could have been for a hackathon. Thus, I decided to name it as a tribute to that hackathon. And besides, the name does not seem to be used for any company or library and sounds cool, at least to me. ;) ## License This repository is under MIT License. Please see the [full license here](LICENSE).


نیازمندی

مقدار نام
- numpy
- imageio
- jstyleson
- torch
- torchvision
- GPUtil
==0.9.0.0 open3d
- tensorboard
- nose2
- packaging
- nose2
- packaging
==0.9.0.0 open3d
- tensorboard


نحوه نصب


نصب پکیج whl deeptech-20210210:

    pip install deeptech-20210210.whl


نصب پکیج tar.gz deeptech-20210210:

    pip install deeptech-20210210.tar.gz