معرفی شرکت ها


deeptables-0.2.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Deep-learning Toolkit for Tabular datasets
ویژگی مقدار
سیستم عامل -
نام فایل deeptables-0.2.5
نام deeptables
نسخه کتابخانه 0.2.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده DeepTables Community
ایمیل نویسنده yangjian@zetyun.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/deeptables/
مجوز Apache License 2.0
# DeepTables [![Python Versions](https://img.shields.io/pypi/pyversions/deeptables.svg)](https://pypi.org/project/deeptables) [![TensorFlow Versions](https://img.shields.io/badge/TensorFlow-2.0+-blue.svg)](https://pypi.org/project/deeptables) [![Downloads](https://pepy.tech/badge/deeptables)](https://pepy.tech/project/deeptables) [![PyPI Version](https://img.shields.io/pypi/v/deeptables.svg)](https://pypi.org/project/deeptables) [![Documentation Status](https://readthedocs.org/projects/deeptables/badge/?version=latest)](https://deeptables.readthedocs.io/) [![Build Status](https://travis-ci.org/DataCanvasIO/deeptables.svg?branch=master)](https://travis-ci.org/DataCanvasIO/deeptables) [![Coverage Status](https://coveralls.io/repos/github/DataCanvasIO/deeptables/badge.svg?branch=master)](https://coveralls.io/github/DataCanvasIO/deeptables?branch=master) [![License](https://img.shields.io/github/license/DataCanvasIO/deeptables.svg)](https://github.com/DataCanvasIO/deeptables/blob/master/LICENSE) ## We Are Hiring! Dear folks, we are opening several precious positions based in Beijing both for professionals and interns avid in AutoML/NAS, please send your resume/cv to yangjian@zetyun.com. (Application deadline: TBD.) ## DeepTables: Deep-learning Toolkit for Tabular data DeepTables(DT) is a easy-to-use toolkit that enables deep learning to unleash great power on tabular data. ## Overview MLP (also known as Fully-connected neural networks) have been shown inefficient in learning distribution representation. The "add" operations of the perceptron layer have been proven poor performance to exploring multiplicative feature interactions. In most cases, manual feature engineering is necessary and this work requires extensive domain knowledge and very cumbersome. How learning feature interactions efficiently in neural networks becomes the most important problem. Various models have been proposed to CTR prediction and continue to outperform existing state-of-the-art approaches to the late years. Well-known examples include FM, DeepFM, Wide&Deep, DCN, PNN, etc. These models can also provide good performance on tabular data under reasonable utilization. DT aims to utilize the latest research findings to provide users with an end-to-end toolkit on tabular data. DT has been designed with these key goals in mind: * Easy to use, non-experts can also use. * Provide good performance out of the box. * Flexible architecture and easy expansion by user. ## Tutorials Please refer to the official docs at [https://deeptables.readthedocs.io/en/latest/](https://deeptables.readthedocs.io/en/latest/). * [Quick Start](https://deeptables.readthedocs.io/en/latest/quick_start.html) * [Examples](https://deeptables.readthedocs.io/en/latest/examples.html) * [ModelConfig](https://deeptables.readthedocs.io/en/latest/model_config.html) * [Models](https://deeptables.readthedocs.io/en/latest/models.html) * [Layers](https://deeptables.readthedocs.io/en/latest/layers.html) * [AutoML](https://deeptables.readthedocs.io/en/latest/automl.html) ## Installation `pip` is recommended to install DeepTables: ```bash pip install tensorflow==2.4.2 deeptables ``` Note: * Tensorflow is required by DeepTables, install it before running DeepTables. * DeepTables was tested with TensorFlow version 2.0 to 2.4, install the tested version please. **GPU** Setup (Optional) To use DeepTables with GPU devices, install `tensorflow-gpu` instead of `tensorflow`. ```bash pip install tensorflow-gpu==2.4.2 deeptables ``` ***Verify the installation***: ```bash python -c "from deeptables.utils.quicktest import test; test()" ``` ## Optional dependencies Following libraries are not hard dependencies and are not automatically installed when you install DeepTables. To use all functionalities of DT, these optional dependencies must be installed. ```bash pip install shap ``` ## Example: ### A simple binary classification example ```python import numpy as np from deeptables.models import deeptable, deepnets from deeptables.datasets import dsutils from sklearn.model_selection import train_test_split #loading data df = dsutils.load_bank() df_train, df_test = train_test_split(df, test_size=0.2, random_state=42) y = df_train.pop('y') y_test = df_test.pop('y') #training config = deeptable.ModelConfig(nets=deepnets.DeepFM) dt = deeptable.DeepTable(config=config) model, history = dt.fit(df_train, y, epochs=10) #evaluation result = dt.evaluate(df_test,y_test, batch_size=512, verbose=0) print(result) #scoring preds = dt.predict(df_test) ``` ### A solution using DeepTables to win the 1st place in Kaggle Categorical Feature Encoding Challenge II [Click here](https://github.com/DataCanvasIO/DeepTables/blob/master/examples/Kaggle%20-%20Categorical%20Feature%20Encoding%20Challenge%20II.ipynb) ## Citation If you use DeepTables in your research, please cite us as follows: Jian Yang, Xuefeng Li, Haifeng Wu. **DeepTables: A Deep Learning Python Package for Tabular Data.** https://github.com/DataCanvasIO/DeepTables, 2022. Version 0.2.x. BibTex: ``` @misc{deeptables, author={Jian Yang, Xuefeng Li, Haifeng Wu}, title={{DeepTables}: { A Deep Learning Python Package for Tabular Data}}, howpublished={https://github.com/DataCanvasIO/DeepTables}, note={Version 0.2.x}, year={2022} } ``` ## DataCanvas ![](docs/source/images/dc_logo_1.png) DeepTables is an open source project created by [DataCanvas](https://www.datacanvas.com/).


نیازمندی

مقدار نام
- packaging
>=1.3.1 scipy
>=0.25.3 pandas
>=1.16.5 numpy
>=0.22.1 scikit-learn
>=2.2.0 lightgbm
>=2.1.0 category-encoders
>=0.2.5.1 hypernets
>=2.10.0 h5py
- eli5
- pytest


زبان مورد نیاز

مقدار نام
>=3.6.* Python


نحوه نصب


نصب پکیج whl deeptables-0.2.5:

    pip install deeptables-0.2.5.whl


نصب پکیج tar.gz deeptables-0.2.5:

    pip install deeptables-0.2.5.tar.gz