معرفی شرکت ها


deepsvp-1.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DeepSVP: Integration of Genomics and Phenotypes forStructural Variant Prioritization using Deep Learning
ویژگی مقدار
سیستم عامل -
نام فایل deepsvp-1.0.3
نام deepsvp
نسخه کتابخانه 1.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Azza Althagafi
ایمیل نویسنده azza.althagafi@kaust.edu.sa
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/deepsvp/
مجوز Apache 2.0
# DeepSVP DeepSVP is a computational method to prioritize structural variants (SV) involved in genetic diseases by combining genomic information with information about gene functions. We incorporate phenotypes linked to genes, functions of gene products, gene expression in individual celltypes, and anatomical sites of expression. DeepSVP systematically relates them to their phenotypic consequences through ontologies and machine learning. ## Training dataset We train and evaluate our method using human SV collected from [dbvar](https://ftp.ncbi.nlm.nih.gov/pub/dbVar/data/Homo_sapiens/by_assembly/GRCh38/vcf/) dataset. ## Annotation data sources (integrated in the candidate SV prediction workflow) We integrated the annotations from different sources: - Gene ontology ([GO](http://geneontology.org/docs/download-go-annotations/)) - Uber-anatomy ontology ([UBERON](https://www.ebi.ac.uk/ols/ontologies/uberon)) - Mammalian Phenotype ontology ([MP](http://www.informatics.jax.org/vocab/mp_ontology)) - Human Phenotype Ontology ([HPO](https://hpo.jax.org/app/download/annotation)) This work is done using [DL2vec](https://github.com/bio-ontology-research-group/DL2Vec). We convert different types of Description Logic axioms into graph representation, and then generate an embedding for each node and edge type. We collected [genomics features](https://lbgi.fr/AnnotSV/annotations) using the [AnnotSV (v2.2)](https://lbgi.fr/AnnotSV/downloads) public tool. ## Installation Using pip version 20.3.1: ``` pip install deepsvp ``` Or you can create a specific Conda Environments (e.g. named "deepsvp-py38-pip2031"): ``` conda create -n deepsvp-py38-pip2031 python=3.8 pip=20.3.1 conda activate deepsvp-py38-pip2031 pip3 install deepsvp pip3 install networkx pip3 install torch pip3 list conda deactivate ``` ## Running the DeepSVP prediction model - Download all the files from [data](https://bio2vec.cbrc.kaust.edu.sa/data/DeepSVP/) and place the uncompressed files/repository in the folder named "data": ``` mkdir DeepSVP/ ;# /path_of_your_DeepSVP_repository/ cd DeepSVP wget "https://bio2vec.cbrc.kaust.edu.sa/data/DeepSVP/data.zip" unzip data.zip cd data ;# /path_of_your_DeepSVP_data_repository/ wget "https://bio2vec.cbrc.kaust.edu.sa/data/DeepSVP/experiments.zip" # can be very long unzip experiments.zip ``` - Download and install the required [AnnoSV (2.3)](https://lbgi.fr/AnnotSV/downloads) tool in the "data" folder: ``` cd /path_of_your_DeepSVP_data_repository/ git clone git@github.com:lgmgeo/AnnotSV.git --branch v2.3 cd AnnotSV/ make PREFIX=. install make DESTDIR= PREFIX=. install-human-annotation cd .. ``` - Add genomic features to your VCF input file (/path_and_name_of_your_vcf_input_file/) thanks to AnnotSV (v2.3): e.g. /path_and_name_of_your_vcf_input_file/ = ./input.vcf e.g. /path_and_name_of_your_annotsv_output_file/ = ./data/output.annotsv.annotated.tsv ``` bash export ANNOTSV=/path_of_your_DeepSVP_data_repository/AnnotSV $ANNOTSV/bin/AnnotSV -SVinputFile ./input.vcf -genomeBuild GRCh38 -outputFile ./data/output.annotsv.annotated.tsv ``` Your annotated VCF file (./data/output.annotsv.annotated.tsv) should be placed in the data folder (/path_of_your_DeepSVP_data_repository/). - Run the command `deepsvp --help` to display help and parameters: ``` Usage: deepsvp [OPTIONS] DeepSVP: A phenotype-based tool to prioritize caustive CNV using WGS data and Phenotype/Gene Functional Similarity Options: -d, --data-root TEXT Data root folder [required] -i, --in-file TEXT Annotated Input file [required] -p, --hpo TEXT List of phenotype ids separated by commas [required] -maf, --maf_filter FLOAT Allele frequency filter using gnomAD and 1000G default<=0.01 -m, --model_type TEXT Ontology model, one of the following (go , mp , hp, cl, uberon, union), default=mp -ag, --aggregation TEXT Aggregation method for the genes within CNV (max or mean) default=max -o, --outfile TEXT Output result file --help Show this message and exit. ``` - Run the example (with you own HPO terms): ``` deepsvp -d data/ -i output.annotsv.annotated.tsv -p HP:0003701,HP:0001324,HP:0010628,HP:0003388,HP:0000774,HP:0002093,HP:0000508,HP:0000218 -m cl -maf 0.01 -ag max -o example_output.txt ``` Or run the example with the deepsvp-py38-pip2031 Conda Environment: ``` conda activate deepsvp-py38-pip2031 deepsvp -d data/ -i $your_annotsv_output.annotated.tsv -p HP:0003701,HP:0001324,HP:0010628,HP:0003388,HP:0000774,HP:0002093,HP:0000508,HP:0000218 -m cl -maf 0.01 -ag max -o example_output.txt conda deactivate ``` Or by using [cwl-runner](https://github.com/common-workflow-language/cwltool), modify the input file in the input example yaml [deepsvp.yaml](https://github.com/bio-ontology-research-group/DeepSVP/blob/master/deepsvp.yaml) file and then run: cwl-runner deepsvp.cwl deepsvp.yaml ``` |======== | 25% Reading the input phenotypes... |================ | 50% Phenotype prediction... |======================== | 75% CNV Prediction... |================================| 100% DONE! You can find the prediction results in the output file: example_output.txt ``` #### Output: The script will output a ranking a score for the candidate caustive CNV. ## Scripts - Details for predicting pathogenic variants and comparison with other methods can be found in the [experiment](https://github.com/bio-ontology-research-group/DL2Vec/tree/master/Experiment) folder. - ``annotations.sh``: This script is used to annotate the varaints. - ``data_preprocessing.py``: preprocessing the annotations and features. - ``pheno_model.py``: script to get the DL2vec score using the trained model. - ``deepsvp_training.py``: script to train and testing the model, with Hyperparameter optimization - ``BWA_GATK.sh`` : script to run GATK workflow for the input fastq files for the real samples, run using KAUST Supercomputing [IBEX](https://www.hpc.kaust.edu.sa/ibex). - ``run_Manta.sh`` : script to generate VCF with the structural variants (SVs), we used [Manta](https://github.com/Illumina/manta) to identify the candidate SVs. run using KAUST Supercomputing [IBEX](https://www.hpc.kaust.edu.sa/ibex). ## Final notes For any questions or comments please contact: azza.althagafi@kaust.edu.sa


نیازمندی

مقدار نام
<8 click
- scikit-learn
- pandas
==2.3.0 tensorflow
- numpy
- scipy
==3.8.3 gensim
- sklearn
- mygene
- h5py
- progress


زبان مورد نیاز

مقدار نام
>3 Python


نحوه نصب


نصب پکیج whl deepsvp-1.0.3:

    pip install deepsvp-1.0.3.whl


نصب پکیج tar.gz deepsvp-1.0.3:

    pip install deepsvp-1.0.3.tar.gz