معرفی شرکت ها


deepsplines-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A framework to train the activation functions of a neural network
ویژگی مقدار
سیستم عامل -
نام فایل deepsplines-1.0.0
نام deepsplines
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Joaquim Campos
ایمیل نویسنده joaquimcampos15@hotmail.com
آدرس صفحه اصلی https://github.com/joaquimcampos/DeepSplines
آدرس اینترنتی https://pypi.org/project/deepsplines/
مجوز MIT
.. image:: https://user-images.githubusercontent.com/26142730/128066373-a42476b4-6694-4810-8397-d6e1fa2638a8.png :width: 50 % :align: center .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5158821.svg :target: https://doi.org/10.5281/zenodo.5158821 *DeepSplines* is a framework to train the activation functions of a neural network. The aim of this repository is to: * Facilitate the reproduction of the results reported in the research papers: * `Learning Activation Functions in Deep (Spline) Neural Networks <http://bigwww.epfl.ch/publications/bohra2003.html>`_; * `Deep Neural Networks with Trainable Activations and Controlled Lipschitz Constant <http://bigwww.epfl.ch/publications/aziznejad2001.html>`_. * Enable a seamless integration of deep spline activation functions in a custom neural network. The proposed scheme is based on the theoretical work of `M.Unser <http://bigwww.epfl.ch/publications/unser1901.html>`_. .. contents:: **Table of Contents** :depth: 2 Requirements ============ * python >= 3.7 * numpy >= 1.10 * pytorch >= 1.5.1 * torchvision >= 0.2.2 * matplotlib >= 3.3.1 * (optional) CUDA The code was developed and tested on a x86_64 Linux system. Installation ============ To install the package, we first create an environment with python 3.7 (or greater): .. code-block:: bash >> conda create -y -n deepsplines python=3.7 >> source activate deepsplines Quick Install -------------- *DeepSplines* is available on `Pypi <https://pypi.org/project/deepsplines/>`_. Therefore, you can install the package via the command: .. code-block:: bash >> pip install deepsplines .. role:: bash(code) :language: bash For NVIDIA GPU compatibility, you need to additionally install :bash:`cudatoolkit` (via :bash:`conda install -c anaconda cudatoolkit`) Developper Install ------------------ It is also possible to install *DeepSplines* from the source for developpers: .. code-block:: bash >> git clone https://github.com/joaquimcampos/DeepSplines >> cd <repository_dir>/ >> pip install -e . Usage ===== Here we show an example on how to adapt the `PyTorch CIFAR-10 tutorial <https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html>`_ to use DeepBSpline activations. .. code-block:: python from deepsplines.ds_modules import dsnn class DSNet(dsnn.DSModule): def __init__(self): super().__init__() self.conv_ds = nn.ModuleList() self.fc_ds = nn.ModuleList() # deepspline parameters opt_params = { 'size': 51, 'range_': 4, 'init': 'leaky_relu', 'save_memory': False } # convolutional layer with 6 output channels self.conv1 = nn.Conv2d(3, 6, 5) self.conv_ds.append(dsnn.DeepBSpline('conv', 6, **opt_params)) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.conv_ds.append(dsnn.DeepBSpline('conv', 16, **opt_params)) # fully-connected layer with 120 output units self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc_ds.append(dsnn.DeepBSpline('fc', 120, **opt_params)) self.fc2 = nn.Linear(120, 84) self.fc_ds.append(dsnn.DeepBSpline('fc', 84, **opt_params)) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(self.conv_ds[0](self.conv1(x))) x = self.pool(self.conv_ds[1](self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = self.fc_ds[0](self.fc1(x)) x = self.fc_ds[1](self.fc2(x)) x = self.fc3(x) return x dsnet = DSNet() dsnet.to(device) main_optimizer = optim.SGD(dsnet.parameters_no_deepspline(), lr=0.001, momentum=0.9) aux_optimizer = optim.Adam(dsnet.parameters_deepspline()) lmbda = 1e-4 # regularization weight lipschitz = False # lipschitz control for epoch in range(2): for i, data in enumerate(trainloader): # get the inputs; data is a list of [inputs, labels] inputs, labels = data[0].to(device), data[1].to(device) # zero the parameter gradients main_optimizer.zero_grad() aux_optimizer.zero_grad() outputs = dsnet(inputs) loss = criterion(outputs, labels) # add regularization loss if lipschitz is True: loss = loss + lmbda * dsnet.BV2() else: loss = loss + lmbda * dsnet.TV2() loss.backward() main_optimizer.step() aux_optimizer.step() For full details, please consult `scripts/deepsplines_tutorial.py <https://github.com/joaquimcampos/DeepSplines/blob/master/scripts/deepsplines_tutorial.py>`_. Reproducing results ------------------- To reproduce the results shown in the research papers [Bohra-Campos2020]_ and [Aziznejad2020]_ one can run the following scripts: .. code-block:: bash >> ./scripts/run_resnet32_cifar.py >> ./scripts/run_nin_cifar.py >> ./scripts/run_twoDnet.py To see the running options, please add :bash:`--help` to the commands above. Developers ========== *DeepSplines* is developed by the `Biomedical Imaging Group <http://bigwww.epfl.ch/>`_, `École Polytéchnique Fédérale de Lausanne <https://www.epfl.ch/en/>`_, Switzerland. For citing this package, please see: http://doi.org/10.5281/zenodo.5156042 Original authors: - **Joaquim Campos** (joaquimcampos15@hotmail.com) - **Pakshal Bohra** (pakshal.bohra@epfl.ch) Contributors: - **Harshit Gupta** References ========== .. [Bohra-Campos2020] P. Bohra, J. Campos, H. Gupta, S. Aziznejad, M. Unser, "Learning Activation Functions in Deep (Spline) Neural Networks," IEEE Open Journal of Signal Processing, vol. 1, pp.295-309, November 19, 2020. .. [Aziznejad2020] S. Aziznejad, H. Gupta, J. Campos, M. Unser, "Deep Neural Networks with Trainable Activations and Controlled Lipschitz Constant," IEEE Transactions on Signal Processing, vol. 68, pp. 4688-4699, August 10, 2020. License ======= The code is released under the terms of the `MIT License <https://github.com/joaquimcampos/DeepSplines/blob/master/LICENSE>`_ Acknowledgements ================ This work was supported in part by the Swiss National Science Foundation under Grant 200020_184646 / 1 and in part by the European Research Council (ERC) under Grant 692726-GlobalBioIm. MIT License Copyright (c) 2021 Joaquim Campos, Pakshal Bohra Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


نیازمندی

مقدار نام
>=1.10 numpy
>=1.5.1 torch
>=0.2.2 torchvision
>=3.3.1 matplotlib
- autopep8
- flake8
- yapf


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl deepsplines-1.0.0:

    pip install deepsplines-1.0.0.whl


نصب پکیج tar.gz deepsplines-1.0.0:

    pip install deepsplines-1.0.0.tar.gz