معرفی شرکت ها


deepray-0.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A new Modular, Scalable, Configurable, Easy-to-Use and Extend infrastructure for Deep Learning based classification.
ویژگی مقدار
سیستم عامل -
نام فایل deepray-0.1.2
نام deepray
نسخه کتابخانه 0.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Hailin Fu
ایمیل نویسنده hailinfufu@outlook.com
آدرس صفحه اصلی https://github.com/fuhailin/deepray
آدرس اینترنتی https://pypi.org/project/deepray/
مجوز Apache-2.0
**DeePray** (`深度祈祷`): A new Modular, Scalable, Configurable, Easy-to-Use and Extend infrastructure for Deep Learning based Recommendation. [![Documentation Status](https://readthedocs.org/projects/deepray/badge/?version=latest)](https://deepray.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/deepray.svg)](https://badge.fury.io/py/deepray) [![GitHub version](https://badge.fury.io/gh/fuhailin%2Fdeepray.svg)](https://badge.fury.io/gh/fuhailin%2Fdeepray) ## Introduction The DeePray library offers state-of-the-art algorithms for [deep learning recommendation]. DeePray is built on latest [TensorFlow 2][(https://tensorflow.org/)] and designed with modular structure, making it easy to discover patterns and answer questions about tabular-structed data. The main goals of DeePray: - Easy to use, newbies can get hands dirty with deep learning quickly - Good performance with web-scale data - Easy to extend, Modular architecture let you build your Neural network like playing LEGO! Let's Get Started! Please refer to the official docs at https://deepray.readthedocs.io/en/latest/. ## Installation #### Install DeePray using PyPI: To install DeePray library from [PyPI](https://pypi.org/) using `pip`, execute the following command: ``` pip install deepray ``` #### Install DeePray from Github source: First, clone the DeePray repository using `git`: ``` git clone https://github.com/fuhailin/deepray.git ``` Then, `cd` to the deepray folder, and install the library by executing the following commands: ``` cd deepray pip install . ``` ## Tutorial ### Census Adult Data Set #### Data preparation In your tabular data, specify **NUMERICAL** for your continue features, **CATEGORY** for categorical features, **VARIABLE** for variable length features, and obviously **LABEL** for label column. Then process them to to [TFRecord](https://www.tensorflow.org/tutorials/load_data/tfrecord) format into order to get good performance with large-scale dataset. ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, LabelEncoder from deepray.utils.converter import CSV2TFRecord # http://archive.ics.uci.edu/ml/datasets/Adult train_data = 'DeePray/examples/census/data/raw_data/adult_data.csv' df = pd.read_csv(train_data) df['income_label'] = (df["income_bracket"].apply(lambda x: ">50K" in x)).astype(int) df.pop('income_bracket') NUMERICAL_FEATURES = ['age', 'fnlwgt', 'hours_per_week', 'capital_gain', 'capital_loss', 'education_num'] CATEGORY_FEATURES = [col for col in df.columns if col != LABEL and col not in NUMERICAL_FEATURES] LABEL = ['income_label'] for feat in CATEGORY_FEATURES: lbe = LabelEncoder() df[feat] = lbe.fit_transform(df[feat]) # Feature normilization mms = MinMaxScaler(feature_range=(0, 1)) df[NUMERICAL_FEATURES] = mms.fit_transform(df[NUMERICAL_FEATURES]) prebatch = 1 # flags.prebatch converter = CSV2TFRecord(LABEL, NUMERICAL_FEATURES, CATEGORY_FEATURES, VARIABLE_FEATURES=[], gzip=False) converter.write_feature_map(df, './data/feature_map.csv') train_df, valid_df = train_test_split(df, test_size=0.2) converter(train_df, out_file='./data/train.tfrecord', prebatch=prebatch) converter(valid_df, out_file='./data/valid.tfrecord', prebatch=prebatch) ``` You will get a feature map file like that: ``` 9,workclass,CATEGORICAL 16,education,CATEGORICAL 7,marital_status,CATEGORICAL 15,occupation,CATEGORICAL 6,relationship,CATEGORICAL 5,race,CATEGORICAL 2,gender,CATEGORICAL 42,native_country,CATEGORICAL 1,hours_per_week,NUMERICAL 1,capital_gain,NUMERICAL 1,age,NUMERICAL 1,fnlwgt,NUMERICAL 1,capital_loss,NUMERICAL 1,education_num,NUMERICAL 2,income_label,LABEL ``` And then create two txt file `train`and `valid` separately to record train set TFRecords and valid set TFRecords file path. ### Choose your model, Training and evaluation ```python """ build and train model """ import sys from absl import app, flags import deepray as dp from deepray.base.trainer import train from deepray.model.build_model import BuildModel FLAGS = flags.FLAGS def main(flags=None): FLAGS(flags, known_only=True) flags = FLAGS model = BuildModel(flags) history = train(model) print(history) argv = [ sys.argv[0], '--model=lr', '--train_data=/Users/vincent/Projects/DeePray/examples/census/data/train', '--valid_data=/Users/vincent/Projects/DeePray/examples/census/data/valid', '--feature_map=/Users/vincent/Projects/DeePray/examples/census/data/feature_map.csv', '--learning_rate=0.01', '--epochs=10', '--batch_size=64', ] main(flags=argv) ``` ## Models List | Titile | Booktitle | Resources | | ------------------------------------------------------------ | :---------: | ------------------------------------------------------------ | | **FM**: Factorization Machines | ICDM'2010 | [[pdf]](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf) [[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_fm.py) | | **FFM**: Field-aware Factorization Machines for CTR Prediction | RecSys'2016 | [[pdf]](https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf) [[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_ffm.py) | | **FNN**: Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction | ECIR'2016 | [[pdf]](https://arxiv.org/abs/1601.02376)[[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_fnn.py) | | **PNN**: Product-based Neural Networks for User Response Prediction | ICDM'2016 | [[pdf]](https://arxiv.org/abs/1611.00144)[[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_pnn.py) | | **Wide&Deep**: Wide & Deep Learning for Recommender Systems | DLRS'2016 | [[pdf]](https://arxiv.org/pdf/1606.07792)[[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_wdl.py) | | **AFM**: Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks | IJCAI'2017 | [[pdf]](https://arxiv.org/abs/1708.04617)[[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_afm.py) | | **NFM**: Neural Factorization Machines for Sparse Predictive Analytics | SIGIR'2017 | [[pdf]](https://arxiv.org/abs/1708.05027)[[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_nfm.py) | | **DeepFM**: DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[C] | IJCAI'2017 | [[pdf]](https://arxiv.org/abs/1703.04247) [[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_deepfm.py) | | **DCN**: Deep & Cross Network for Ad Click Predictions | ADKDD'2017 | [[pdf]](https://arxiv.org/abs/1708.05123) [[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_dcn.py) | | **xDeepFM**: xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems | KDD'2018 | [[pdf]](https://arxiv.org/abs/1803.05170) [[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_xdeepfm.py) | | **DIN**: DIN: Deep Interest Network for Click-Through Rate Prediction | KDD'2018 | [[pdf]](https://arxiv.org/abs/1706.06978) [[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_dien.py) | | **DIEN**: DIEN: Deep Interest Evolution Network for Click-Through Rate Prediction | AAAI'2019 | [[pdf]](https://arxiv.org/abs/1809.03672) [[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_dien.py) | | **DSIN**: Deep Session Interest Network for Click-Through Rate Prediction | IJCAI'2019 | [[pdf]](https://arxiv.org/abs/1905.06482)[[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_dsin.py) | | **AutoInt**: Automatic Feature Interaction Learning via Self-Attentive Neural Networks | CIKM'2019 | [[pdf]](https://arxiv.org/abs/1810.11921)[[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_autoint.py) | | **FLEN**: Leveraging Field for Scalable CTR Prediction | AAAI'2020 | [[pdf]](https://arxiv.org/pdf/1911.04690.pdf)[[code]](https://github.com/fuhailin/DeePray/blob/master/deepray/model/model_flen.py) | | **DFN**: Deep Feedback Network for Recommendation | IJCAI'2020 | [[pdf]]()[[code]](TODO) | # How to build your own model with DeePray Inheriting `BaseCTRModel` class from `from deepray.model.model_ctr`, and implement your own `build_network()` method! # Contribution DeePray is still under development, and call for contributions! ``` * Hailin Fu (`Hailin <https://github.com/fuhailin>`) * Call for contributions! ``` 让DeePray成为推荐算法新基建需要你的贡献 # Citing DeePray is designed, developed and supported by [Hailin](https://github.com/fuhailin/). If you use any part of this library in your research, please cite it using the following BibTex entry ```latex @misc{DeePray, author = {Hailin Fu}, title = {DeePray: A new Modular, Scalable, Configurable, Easy-to-Use and Extend infrastructure for Deep Learning based Recommendation}, year = {2020}, publisher = {GitHub}, journal = {GitHub Repository}, howpublished = {\url{https://github.com/fuhailin/deepray}}, } ``` # License Copyright (c) Copyright © 2020 The DeePray Authors<Hailin Fu>. All Rights Reserved. Licensed under the [Apach](LICENSE) License. # Reference https://github.com/shenweichen/DeepCTR https://github.com/aimetrics/jarvis https://github.com/shichence/AutoInt # Contact If you want cooperation or have any questions, please follow my wechat offical account: 公众微信号ID:【StateOfTheArt】 ![StateOfTheArt](https://gitee.com/fuhailin/Object-Storage-Service/raw/master/wechat_channel.png)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl deepray-0.1.2:

    pip install deepray-0.1.2.whl


نصب پکیج tar.gz deepray-0.1.2:

    pip install deepray-0.1.2.tar.gz