معرفی شرکت ها


deepr-2.9.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DeepR: Build and Train Deep Learning Pipelines for Production
ویژگی مقدار
سیستم عامل -
نام فایل deepr-2.9.1
نام deepr
نسخه کتابخانه 2.9.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Criteo
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/deepr/
مجوز -
DeepR: Build and Train Deep Learning Pipelines for Production ============================================================= |pypi|_ |ci|_ .. |pypi| image:: https://img.shields.io/pypi/v/deepr.svg .. _pypi: https://pypi.python.org/pypi/deepr .. |ci| image:: https://github.com/criteo/deepr/workflows/Continuous%20integration/badge.svg .. _ci: https://github.com/criteo/deepr/actions?query=workflow%3A%22Continuous+integration%22 DeepR is a library for Deep Learning on top of Tensorflow 1.x that focuses on production capabilities. It makes it easy to define pipelines (via the ``Job`` abstraction), preprocess data (via the ``Prepro`` abstraction), design models (via the ``Layer`` abstraction) and train them either locally or on a Yarn cluster. It also integrates nicely with MLFlow and Graphite, allowing for production ready logging capabilities. It can be seen as a collection of generic tools and abstractions to be extended for more specific use cases. See the ``Use DeepR`` section for more information. Submitting jobs and defining flexible pipelines is made possible thanks to a config system based off simple dictionaries and import strings. It is similar to `Thinc config system <https://thinc.ai/docs>`_ or `gin config <https://github.com/google/gin-config>`_ in a lot of ways. To start with deepr read the `blogpost <https://medium.com/criteo-labs/deepr-training-tensorflow-models-for-production-dda34a914c3b?source=friends_link&sk=91949017f33714dba3323956035f76e0>`_ then go to `quickstart on colab <https://colab.research.google.com/github/criteo/deepr/blob/master/docs/getting_started/quickstart.ipynb>`_ Why a Deep Learning Library based on TF1.x ------------------------------------------ Tensorflow 1.x provides great production oriented capabilities, centered around the ``tf.Estimator`` API. It makes it possible to deploy models using a ``protobuf`` with no ``python`` code, and optimize computational graphs with XLA compilation. Although ``DeepR`` comes with a ``Layer`` interface (most similar to `google TRAX <https://github.com/google/trax>`_ and very close to most modern frameworks) that makes it easy to define models using a functional programming approach, most of its capabilities are orthogonal to it. Most of the building blocks expect generic ``python`` types (for example, a ``Layer`` is merely a function ``fn(tensors, mode)``). Use DeepR --------- You can use ``DeepR`` as a simple python library, reusing only a subset of the concepts (the config system is generic for example) or build your own extension as a standalone python package that depends on ``deepr``. Have a look at the submodule `examples <../deepr/examples>`_ of ``deepr`` that illustrates what packages built on top of deepr would look like. It defines custom jobs, layers, preprocessors, macros as well as `configs <../deepr/examples/multiply/configs>`_. Once your custom components are packaged in a library, it is easy to run configs with .. code-block:: deepr run config.json macros.json MovieLens Example ----------------- You can try using DeepR on the MovieLens dataset, consisting of movie ratings aggregated by users. The submodule `movielens <../deepr/examples/movielens>`_ implements an AverageModel, a Transformer Model and a BPR loss as well as jobs to build and evaluate on this dataset. You can jump to the notebook on `Colab <https://colab.research.google.com/github/criteo/deepr/blob/master/docs/movielens/movielens.ipynb>`_ or use the command line. .. code-block:: pip install deepr[cpu] faiss_cpu cd deepr/examples/movielens/configs wget http://files.grouplens.org/datasets/movielens/ml-20m.zip unzip ml-20m.zip deepr run config.json macros.json Installation ------------ Prerequisites ~~~~~~~~~~~~~ Make sure you use ``python>=3.6`` and an up-to-date version of ``pip`` and ``setuptools`` .. code-block:: python --version pip install -U pip setuptools It is recommended to install ``deepr`` in a new virtual environment. For example .. code-block:: python -m venv deepr source deepr/bin/activate pip install -U pip setuptools pip install deepr[cpu] Using Pip ~~~~~~~~~ If installing using pip and your own ``requirements.txt`` file, be aware that ``Tensorflow`` is listed in ``extras_require`` in the ``setup.py``, which means that ``pip install deepr`` WON'T INSTALL Tensorflow. This is because the Tensorflow requirement is different depending on the platform (GPU or CPU-only). You can specify which extras to use using the ``[cpu]`` or ``[gpu]`` argument like in the following examples .. code-block:: pip install deepr[cpu] pip install deepr[gpu] pip install -e ".[cpu]" pip install -e ".[gpu]" Or alternatively, pre-install Tensorflow separately like so .. code-block:: pip install tensorflow==1.15.2 pip install deepr From Source ~~~~~~~~~~~ First, clone the ``deepr`` repo on your local machine with .. code-block:: git clone https://github.com/criteo/deepr.git cd deepr To install from source in editable mode, run .. code-block:: make install-cpu Or to install on a GPU enabled machine .. code-block:: make install-gpu To install development tools and test requirements, run .. code-block:: make install-dev Test ---- To run unit tests in your current environment, run .. code-block:: make test To run integration tests in your current environment, run .. code-block:: make integration To run lint + unit and integration tests in a fresh virtual environment, run .. code-block:: make venv-lint-test-integration Lint ---- To run ``mypy``, ``pylint`` and ``black --check``: .. code-block:: make lint To auto-format the code using ``black`` .. code-block:: make black Command Line Tools ------------------ To get a list of available commands, run .. code-block:: deepr --help Contributing ------------ See `CONTRIBUTING <CONTRIBUTING.rst>`_ Change log ---------- See `CHANGELOG <CHANGELOG.rst>`_ Main contributors ----------------- Main contributors and maintainers for deepr are `Guillaume Genthial <https://github.com/guillaumegenthial>`_, `Romain Beaumont <https://github.com/rom1504>`_, `Denis Kuzin <https://github.com/denkuzin>`_, `Amine Benhalloum <https://github.com/bamine>`_


نحوه نصب


نصب پکیج whl deepr-2.9.1:

    pip install deepr-2.9.1.whl


نصب پکیج tar.gz deepr-2.9.1:

    pip install deepr-2.9.1.tar.gz