<div align="center">
<img src="https://raw.githubusercontent.com/GRAAL-Research/deepparse/main/docs/source/_static/logos/deepparse.png" width="220" height="91"/>
[](https://pypi.org/project/deepparse)
[](https://badge.fury.io/py/deepparse)
[](https://pepy.tech/project/deepparse)
[](https://pepy.tech/project/deepparse)
[](https://github.com/GRAAL-Research/deepparse/actions/workflows/formatting.yml)
[](https://github.com/GRAAL-Research/deepparse/actions/workflows/linting.yml)
[](https://github.com/GRAAL-Research/deepparse/actions/workflows/tests.yml)
[](https://github.com/GRAAL-Research/deepparse/actions/workflows/docs.yml)
[](https://codecov.io/gh/GRAAL-Research/deepparse)
[](https://www.codacy.com/gh/GRAAL-Research/deepparse/dashboard?utm_source=github.com&utm_medium=referral&utm_content=GRAAL-Research/deepparse&utm_campaign=Badge_Grade)
<a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
[](https://img.shields.io/badge/PR-Welcome-%23FF8300.svg?)
[](http://www.gnu.org/licenses/lgpl-3.0)
[](https://zenodo.org/badge/latestdoi/276474742)
[](https://github.com/GRAAL-Research/deepparse-address-data)
[](https://openbase.com/python/deepparse?utm_source=embedded&utm_medium=badge&utm_campaign=rate-badge)
</div>
## Here is Deepparse.
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning.
Use deepparse to
- parse multinational address using one of our pretrained models with or without attention mechanism,
- parse addresses directly from the command line without code to write,
- retrain our pretrained models on new data to improve parsing on specific country address patterns,
- retrain our pretrained models with new prediction tags easily,
- retrain our pretrained models with or without freezing some layers,
- train a new Seq2Seq addresses parsing models easily using a new model configuration.
Read the documentation at [deepparse.org](https://deepparse.org).
Deepparse is compatible with the __latest version of PyTorch__ and __Python >= 3.8__.
### Countries and Results
We evaluate our models on two forms of address data
- **clean data** which refers to addresses containing elements from four categories, namely a street name, a
municipality, a province and a postal code,
- **incomplete data** which is made up of addresses missing at least one category amongst the aforementioned ones.
You can get our dataset [here](https://github.com/GRAAL-Research/deepparse-address-data).
#### Clean Data
The following table presents the accuracy (using clean data) on the 20 countries we used during training for both our
models. Attention mechanisms improve performance by around 0.5% for all countries.
| Country | FastText (%) | BPEmb (%) | Country | FastText (%) | BPEmb (%) |
|:---------------|---------------:|------------:|:------------|---------------:|------------:|
| Norway | 99.06 | 98.3 | Austria | 99.21 | 97.82 |
| Italy | 99.65 | 98.93 | Mexico | 99.49 | 98.9 |
| United Kingdom | 99.58 | 97.62 | Switzerland | 98.9 | 98.38 |
| Germany | 99.72 | 99.4 | Denmark | 99.71 | 99.55 |
| France | 99.6 | 98.18 | Brazil | 99.31 | 97.69 |
| Netherlands | 99.47 | 99.54 | Australia | 99.68 | 98.44 |
| Poland | 99.64 | 99.52 | Czechia | 99.48 | 99.03 |
| United States | 99.56 | 97.69 | Canada | 99.76 | 99.03 |
| South Korea | 99.97 | 99.99 | Russia | 98.9 | 96.97 |
| Spain | 99.73 | 99.4 | Finland | 99.77 | 99.76 |
We have also made a zero-shot evaluation of our models using clean data from 41 other countries; the results are shown
in the next table.
| Country | FastText (%) | BPEmb (%) | Country | FastText (%) | BPEmb (%) |
|:-------------|---------------:|------------:|:--------------|---------------:|------------:|
| Latvia | 89.29 | 68.31 | Faroe Islands | 71.22 | 64.74 |
| Colombia | 85.96 | 68.09 | Singapore | 86.03 | 67.19 |
| Réunion | 84.3 | 78.65 | Indonesia | 62.38 | 63.04 |
| Japan | 36.26 | 34.97 | Portugal | 93.09 | 72.01 |
| Algeria | 86.32 | 70.59 | Belgium | 93.14 | 86.06 |
| Malaysia | 83.14 | 89.64 | Ukraine | 93.34 | 89.42 |
| Estonia | 87.62 | 70.08 | Bangladesh | 72.28 | 65.63 |
| Slovenia | 89.01 | 83.96 | Hungary | 51.52 | 37.87 |
| Bermuda | 83.19 | 59.16 | Romania | 90.04 | 82.9 |
| Philippines | 63.91 | 57.36 | Belarus | 93.25 | 78.59 |
| Bosnia | 88.54 | 67.46 | Moldova | 89.22 | 57.48 |
| Lithuania | 93.28 | 69.97 | Paraguay | 96.02 | 87.07 |
| Croatia | 95.8 | 81.76 | Argentina | 81.68 | 71.2 |
| Ireland | 80.16 | 54.44 | Kazakhstan | 89.04 | 76.13 |
| Greece | 87.08 | 38.95 | Bulgaria | 91.16 | 65.76 |
| Serbia | 92.87 | 76.79 | New Caledonia | 94.45 | 94.46 |
| Sweden | 73.13 | 86.85 | Venezuela | 79.23 | 70.88 |
| New Zealand | 91.25 | 75.57 | Iceland | 83.7 | 77.09 |
| India | 70.3 | 63.68 | Uzbekistan | 85.85 | 70.1 |
| Cyprus | 89.64 | 89.47 | Slovakia | 78.34 | 68.96 |
| South Africa | 95.68 | 74.82 |
Moreover, we also tested the performance when using attention mechanism to further improve zero-shot performance on
those countries; the result are shown in the next table.
| Country | FastText (%) | FastTextAtt (%) | BPEmb (%) | BPEmbAtt (%) | Country | FastText (%) | FastTextAtt (%) | BPEmb (%) | BPEmbAtt (%) |
|:--------------|---------------:|------------------:|------------:|---------------:|:--------------|---------------:|------------------:|------------:|---------------:|
| Ireland | 80.16 | 89.11 | 54.44 | 81.84 | Serbia | 92.87 | 95.88 | 76.79 | 91.4 |
| Uzbekistan | 85.85 | 87.24 | 70.1 | 76.71 | Ukraine | 93.34 | 94.58 | 89.42 | 92.65 |
| South Africa | 95.68 | 97.25 | 74.82 | 97.95 | Paraguay | 96.02 | 97.08 | 87.07 | 97.36 |
| Greece | 87.08 | 86.04 | 38.95 | 58.79 | Algeria | 86.32 | 87.3 | 70.59 | 84.56 |
| Belarus | 93.25 | 97.4 | 78.59 | 97.49 | Sweden | 73.13 | 89.24 | 86.85 | 93.53 |
| Portugal | 93.09 | 94.92 | 72.01 | 93.76 | Hungary | 51.52 | 51.08 | 37.87 | 24.48 |
| Iceland | 83.7 | 96.54 | 77.09 | 96.63 | Colombia | 85.96 | 90.08 | 68.09 | 88.52 |
| Latvia | 89.29 | 93.14 | 68.31 | 73.79 | Malaysia | 83.14 | 74.62 | 89.64 | 91.14 |
| Bosnia | 88.54 | 87.27 | 67.46 | 89.02 | India | 70.3 | 75.31 | 63.68 | 80.56 |
| Réunion | 84.3 | 97.74 | 78.65 | 94.27 | Croatia | 95.8 | 95.32 | 81.76 | 85.99 |
| Estonia | 87.62 | 88.2 | 70.08 | 77.32 | New Caledonia | 94.45 | 99.61 | 94.46 | 99.77 |
| Japan | 36.26 | 46.91 | 34.97 | 49.48 | New Zealand | 91.25 | 97 | 75.57 | 95.7 |
| Singapore | 86.03 | 89.92 | 67.19 | 88.17 | Romania | 90.04 | 95.38 | 82.9 | 93.41 |
| Bangladesh | 72.28 | 78.21 | 65.63 | 77.09 | Slovakia | 78.34 | 82.29 | 68.96 | 96 |
| Argentina | 81.68 | 88.59 | 71.2 | 86.8 | Kazakhstan | 89.04 | 92.37 | 76.13 | 96.08 |
| Venezuela | 79.23 | 95.47 | 70.88 | 96.38 | Indonesia | 62.38 | 66.87 | 63.04 | 71.17 |
| Bulgaria | 91.16 | 91.73 | 65.76 | 93.28 | Cyprus | 89.64 | 97.44 | 89.47 | 98.01 |
| Bermuda | 83.19 | 93.25 | 59.16 | 93.8 | Moldova | 89.22 | 92.07 | 57.48 | 89.08 |
| Slovenia | 89.01 | 95.08 | 83.96 | 96.73 | Lithuania | 93.28 | 87.74 | 69.97 | 78.67 |
| Philippines | 63.91 | 81.94 | 57.36 | 83.42 | Belgium | 93.14 | 90.72 | 86.06 | 89.85 |
| Faroe Islands | 71.22 | 73.23 | 64.74 | 85.39 | | | | | |
#### Incomplete Data
The following table presents the accuracy on the 20 countries we used during training for both our models but for
incomplete data. We didn't test on the other 41 countries since we did not train on them and therefore do not expect to
achieve an interesting performance. Attention mechanisms improve performance by around 0.5% for all countries.
| Country | FastText (%) | BPEmb (%) | Country | FastText (%) | BPEmb (%) |
|:---------------|---------------:|------------:|:------------|---------------:|------------:|
| Norway | 99.52 | 99.75 | Austria | 99.55 | 98.94 |
| Italy | 99.16 | 98.88 | Mexico | 97.24 | 95.93 |
| United Kingdom | 97.85 | 95.2 | Switzerland | 99.2 | 99.47 |
| Germany | 99.41 | 99.38 | Denmark | 97.86 | 97.9 |
| France | 99.51 | 98.49 | Brazil | 98.96 | 97.12 |
| Netherlands | 98.74 | 99.46 | Australia | 99.34 | 98.7 |
| Poland | 99.43 | 99.41 | Czechia | 98.78 | 98.88 |
| United States | 98.49 | 96.5 | Canada | 98.96 | 96.98 |
| South Korea | 91.1 | 99.89 | Russia | 97.18 | 96.01 |
| Spain | 99.07 | 98.35 | Finland | 99.04 | 99.52 |
## Getting Started:
```python
from deepparse.parser import AddressParser
from deepparse.dataset_container import CSVDatasetContainer
address_parser = AddressParser(model_type="bpemb", device=0)
# you can parse one address
parsed_address = address_parser("350 rue des Lilas Ouest Québec Québec G1L 1B6")
# or multiple addresses
parsed_address = address_parser(
[
"350 rue des Lilas Ouest Québec Québec G1L 1B6",
"350 rue des Lilas Ouest Québec Québec G1L 1B6",
]
)
# or multinational addresses
# Canada, US, Germany, UK and South Korea
parsed_address = address_parser(
[
"350 rue des Lilas Ouest Québec Québec G1L 1B6",
"777 Brockton Avenue, Abington MA 2351",
"Ansgarstr. 4, Wallenhorst, 49134",
"221 B Baker Street",
"서울특별시 종로구 사직로3길 23",
]
)
# you can also get the probability of the predicted tags
parsed_address = address_parser(
"350 rue des Lilas Ouest Québec Québec G1L 1B6", with_prob=True
)
# Print the parsed address
print(parsed_address)
# or using one of our dataset container
addresses_to_parse = CSVDatasetContainer(
"./a_path.csv", column_names=["address_column_name"], is_training_container=False
)
address_parser(addresses_to_parse)
```
The default predictions tags are the following
- `"StreetNumber"`: for the street number,
- `"StreetName"`: for the name of the street,
- `"Unit"`: for the unit (such as apartment),
- `"Municipality"`: for the municipality,
- `"Province"`: for the province or local region,
- `"PostalCode"`: for the postal code,
- `"Orientation"`: for the street orientation (e.g. west, east),
- `"GeneralDelivery"`: for other delivery information.
### Parse Addresses From the Command Line
You can also use our cli to parse addresses using:
```sh
parse <parsing_model> <dataset_path> <export_file_name>
```
### Parse Addresses Using Your Own Retrained Model
> See [here](https://github.com/GRAAL-Research/deepparse/blob/main/examples/retrained_model_parsing.py) for a complete
> example.
```python
address_parser = AddressParser(
model_type="bpemb",
device=0,
path_to_retrained_model="path/to/retrained/bpemb/model.p",
)
address_parser("350 rue des Lilas Ouest Québec Québec G1L 1B6")
```
### Retrain a Model
> See [here](https://github.com/GRAAL-Research/deepparse/blob/main/examples/fine_tuning.py) for a complete example
> using Pickle
> and [here](https://github.com/GRAAL-Research/deepparse/blob/main/examples/fine_tuning_with_csv_dataset.py)
> for a complete example using CSV.
```python
# We will retrain the fasttext version of our pretrained model.
address_parser = AddressParser(model_type="fasttext", device=0)
address_parser.retrain(training_container, train_ratio=0.8, epochs=5, batch_size=8)
```
One can also freeze some layers to speed up the training using the ``layers_to_freeze`` parameter.
```python
address_parser.retrain(
training_container,
train_ratio=0.8,
epochs=5,
batch_size=8,
layers_to_freeze="seq2seq",
)
```
Or you can also give a specific name to the retrained model. This name will be use as the model name (for print and
class name) when reloading it.
```python
address_parser.retrain(
training_container,
train_ratio=0.8,
epochs=5,
batch_size=8,
name_of_the_retrain_parser="MyNewParser",
)
```
### Retrain a Model With an Attention Mechanism
> See [here](https://github.com/GRAAL-Research/deepparse/blob/main/examples/retrain_attention_model.py) for a complete
> example.
```python
# We will retrain the fasttext version of our pretrained model.
address_parser = AddressParser(
model_type="fasttext", device=0, attention_mechanism=True
)
address_parser.retrain(training_container, train_ratio=0.8, epochs=5, batch_size=8)
```
### Retrain a Model With New Tags
> See [here](https://github.com/GRAAL-Research/deepparse/blob/main/examples/retrain_with_new_prediction_tags.py) for a
> complete example.
```python
address_components = {"ATag": 0, "AnotherTag": 1, "EOS": 2}
address_parser.retrain(
training_container,
train_ratio=0.8,
epochs=1,
batch_size=128,
prediction_tags=address_components,
)
```
### Retrain a Seq2Seq Model From Scratch
> See [here](https://github.com/GRAAL-Research/deepparse/blob/main/examples/retrain_with_new_seq2seq_params.py) for
> a complete example.
```python
seq2seq_params = {"encoder_hidden_size": 512, "decoder_hidden_size": 512}
address_parser.retrain(
training_container,
train_ratio=0.8,
epochs=1,
batch_size=128,
seq2seq_params=seq2seq_params,
)
```
### Download Our Models
Here are the URLs to download our pretrained models directly
- [FastText](https://graal.ift.ulaval.ca/public/deepparse/fasttext.ckpt),
- [FastTextAttention](https://graal.ift.ulaval.ca/public/deepparse/fasttext_attention.ckpt),
- [BPEmb](https://graal.ift.ulaval.ca/public/deepparse/bpemb.ckpt),
- [BPEmbAttention](https://graal.ift.ulaval.ca/public/deepparse/bpemb_attention.ckpt),
- [FastText Light](https://graal.ift.ulaval.ca/public/deepparse/fasttext.magnitude.gz) (
using [Magnitude Light](https://github.com/davebulaval/magnitude-light)).
Or you can use our cli to download our pretrained models directly using:
```sh
download_model <model_name>
```
------------------
## Installation
Before installing deepparse, you must have the latest version of [PyTorch](https://pytorch.org/) in your environment.
- **Install the stable version of deepparse:**
```sh
pip install deepparse
```
- **Install the latest development version of deepparse:**
```sh
pip install -U git+https://github.com/GRAAL-Research/deepparse.git@dev
```
------------------
## Cite
Use the following for the article;
```
@misc{yassine2020leveraging,
title={{Leveraging Subword Embeddings for Multinational Address Parsing}},
author={Marouane Yassine and David Beauchemin and François Laviolette and Luc Lamontagne},
year={2020},
eprint={2006.16152},
archivePrefix={arXiv}
}
```
and this one for the package;
```
@misc{deepparse,
author = {Marouane Yassine and David Beauchemin},
title = {{Deepparse: A State-Of-The-Art Deep Learning Multinational Addresses Parser}},
year = {2020},
note = {\url{https://deepparse.org}}
}
```
------------------
## Contributing to Deepparse
We welcome user input, whether it is regarding bugs found in the library or feature propositions ! Make sure to have a
look at our [contributing guidelines](https://github.com/GRAAL-Research/deepparse/blob/main/.github/CONTRIBUTING.md)
for more details on this matter.
## License
Deepparse is LGPLv3 licensed, as found in
the [LICENSE file](https://github.com/GRAAL-Research/deepparse/blob/main/LICENSE).
------------------