معرفی شرکت ها


deepof-0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A suite for postprocessing time-series extracted from videos of freely moving rodents using DeepLabCut
ویژگی مقدار
سیستم عامل -
نام فایل deepof-0.2
نام deepof
نسخه کتابخانه 0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Lucas Miranda
ایمیل نویسنده lucas_miranda@psych.mpg.de
آدرس صفحه اصلی https://gitlab.mpcdf.mpg.de/lucasmir/deepof/
آدرس اینترنتی https://pypi.org/project/deepof/
مجوز -
[![Pipeline](https://gitlab.mpcdf.mpg.de/lucasmir/deepof/badges/master/pipeline.svg)](https://gitlab.mpcdf.mpg.de/lucasmir/deepof/-/pipelines) [![Coverage](https://gitlab.mpcdf.mpg.de/lucasmir/deepof/badges/master/coverage.svg)](https://coverage.readthedocs.io/en/coverage-5.3/) [![Documentation Status](https://readthedocs.org/projects/deepof/badge/?version=latest)](https://deepof.readthedocs.io/en/latest) [![CodeFactor](https://www.codefactor.io/repository/github/lucasmiranda42/deepof/badge)](https://www.codefactor.io/repository/github/lucasmiranda42/deepof) [![Version](https://img.shields.io/badge/release-v0.2-informational)](https://pypi.org/project/deepof/) [![MLFPM](https://img.shields.io/badge/funding-MLFPM-informational)](https://mlfpm.eu/) [![Black](https://img.shields.io/badge/code%20style-black-black)](https://github.com/psf/black) <br> <div align="center"> <img width="350" height="350" src="https://gitlab.mpcdf.mpg.de/lucasmir/deepof/-/raw/master/logos/deepOF_logo_w_text.png"> </div> ### A suite for postprocessing time-series extracted from videos of freely moving rodents using [DeepLabCut](http://www.mousemotorlab.org/deeplabcut) # You can use this package to either extract pre-defined motifs from the time series (such as time-in-zone, climbing, basic social interactions) or to embed your data into a sequence-aware latent space to extract meaningful motifs in an unsupervised way! Both of these can be used within the package, for example, to automatically compare user-defined experimental groups. ### How do I start? ##### Installation: The easiest way to install DeepOF is to use [pip](https://pypi.org/project/deepof): ```bash pip install deepof ``` Alternatively, you can download our pre-built [Docker image](https://hub.docker.com/repository/docker/lucasmiranda42/deepof), which contains all compatible dependencies: ```bash # download the latest available image docker pull lucasmiranda42/deepof:latest # run the image in interactive mode, enabling you to open python and import deepof docker run -it lucasmiranda42/deepof ``` Or use [poetry](https://python-poetry.org/): ```bash # after installing poetry and clonning the DeepOF repository, just run poetry install # from the main directory ``` ##### Before we delve in: DeepOF relies heavily on DeepLabCut's output. Thorough tutorials on how to get started with DLC for pose estimation can be found [here](https://www.mousemotorlab.org/deeplabcut). Once your videos are processed and tagged, you can use DeepOF to extract and annotate your motion-tracking time-series. While many features in DeepOF can work regardless of the set of labels used, we currently recommend using videos from a top-down perspective, and follow our recommended set of labels (which can be found in the full documentation page). A pre-trained model capable of recognizing **C57Bl6** and **CD1** mice can be downloaded from [our repository](https://gitlab.mpcdf.mpg.de/lucasmir/deepof/tree/master/models). ##### Basic usage: The main module with which you'll interact is called ```deepof.data```. Let's import it and create a project: ```python import deepof.data my_deepof_project = deepof.data.Project( project_path=".", # Path where to create project files video_path="/path/to/videos", # Path to DLC tracked videos table_path="/path/to/tables", # Path to DLC output project_name="my_deepof_project", # Name of the current project exp_conditions={exp_ID: exp_condition} # Dictionary containing one or more experimental conditions per provided video ) ``` This command will create a ```deepof.data.Project``` object storing all the necessary information to start. There are many parameters that we can set here, but let's stick to the basics for now. One you have this, you can run you project using the ```.create()``` method, which will do quite a lot of computing under the hood (load your data, smooth your trajectories, compute distances, angles, and areas between body parts, and save all results to disk). The returned object belongs to the ```deepof.data.Coordinates``` class. ```python my_project = my_project.create(verbose=True) ``` Once you have this, you can do several things! But let's first explore how the results of those computations mentioned are stored. To extract trajectories, distances, angles and/or areas, you can respectively type: ```python my_project_coords = my_project.get_coords(center="Center", polar=False, align="Nose", speed=0) my_project_dists = my_project.get_distances(speed=0) my_project_angles = my_project.get_angles(speed=0) my_project_areas = my_project.get_areas(speed=0) ``` Here, the data are stored as ```deepof.data.table_dict``` instances. These are very similar to python dictionaries with experiment IDs as keys and pandas.DataFrame objects as values, with a few extra methods for convenience. Peeping into the parameters you see in the code block above, ```center``` centers your data (it can be either a boolean or one of the body parts in your model! in which case the coordinate origin will be fixed to the position of that point); ```polar``` makes the ```.get_coords()``` method return polar instead of Cartesian coordinates, and ```speed``` indicates the derivation level to apply (0 is position-based, 1 speed, 2 acceleration, 3 jerk, etc). Regarding ```align``` and ```align-inplace```, they take care of aligning the animal position to the y Cartesian axis: if we center the data to "Center" and set ```align="Nose", align_inplace=True```, all frames in the video will be aligned in a way that will keep the Center-Nose axis fixed. This is useful to constrain the set of movements that one can extract with our unsupervised methods. As mentioned above, the two main analyses that you can run are supervised and unsupervised. They are executed by the ```.supervised_annotation()``` method, and the ```.deep_unsupervised_embedding()``` methods of the ```deepof.data.Coordinates``` class, respectively. ```python supervised_annot = my_project.supervised_annotation() gmvae_embedding = my_project.deep_unsupervised_embedding() ``` The former returns a ```deepof.data.TableDict``` object, with a pandas.DataFrame per experiment containing a series of annotations. The latter is a bit more complicated: it returns a series of objects that depend on the model selected (we offer three flavours of deep clustering models), and allow for further analysis comparing cluster expression and dynamics. That's it for this (very basic) introduction. Check out the tutorials [full documentation](https://deepof.readthedocs.io/en/latest/index.html) for details! --- This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813533 <div align="center"> <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Flag_of_Europe.svg/255px-Flag_of_Europe.svg.png"> </div> ---


نیازمندی

مقدار نام
==1.4.0 absl-py
==0.7.13 alabaster
==3.6.2 anyio
==0.1.3 appnope
==21.3.0 argon2-cffi
==21.2.0 argon2-cffi-bindings
==1.2.3 arrow
==2.2.1 asttokens
==1.6.3 astunparse
==22.2.0 attrs
==10.0.0 av
==2.11.0 Babel
==0.2.0 backcall
==4.11.1 beautifulsoup4
==22.12.0 black
==5.0.1 bleach
==2.0.0 blosc2
==5.2.1 cachetools
==1.1.1 catboost
==2022.12.7 certifi
==1.15.1 cffi
==3.0.1 charset-normalizer
==8.1.3 click
==2.2.1 cloudpickle
==0.1.2 comm
==1.0.7 contourpy
==6.5.0 coverage
==0.11.0 cycler
==0.29.33 Cython
==2023.1.0 dask
==2022.9.0 dask-image
==1.6.5 debugpy
==5.1.1 decorator
==0.7.1 defusedxml
==0.1.8 dm-tree
==0.17.1 docutils
==0.4 entrypoints
==1.1.0 et-xmlfile
==1.1.0 exceptiongroup
==1.2.0 executing
==2.16.2 fastjsonschema
==23.1.4 flatbuffers
==4.38.0 fonttools
==1.5.1 fqdn
==2022.11.0 fsspec
==0.4.0 gast
==2.16.0 google-auth
==0.4.6 google-auth-oauthlib
==0.2.0 google-pasta
==0.20.1 graphviz
==1.51.1 grpcio
==3.7.0 h5py
==6.62.1 hypothesis
==3.4 idna
==2.24.0 imageio
==0.4.8 imageio-ffmpeg
==1.4.1 imagesize
==0.10.1 imbalanced-learn
==0.0 imblearn
==6.0.0 importlib-metadata
==2.0.0 iniconfig
==6.20.2 ipykernel
==8.8.0 ipython
==0.2.0 ipython-genutils
==8.0.4 ipywidgets
==20.11.0 isoduration
==0.18.2 jedi
==3.1.2 Jinja2
==1.2.0 joblib
==2.3 jsonpointer
==4.17.3 jsonschema
==1.0.0 jupyter
==6.4.4 jupyter-console
==0.6.3 jupyter-events
==0.4.0 jupyter-sphinx
==7.4.9 jupyter-client
==5.1.3 jupyter-core
==2.1.0 jupyter-server
==0.4.4 jupyter-server-terminals
==0.2.2 jupyterlab-pygments
==3.0.5 jupyterlab-widgets
==2.11.0 keras
==1.1.3 keras-tuner
==1.4.4 kiwisolver
==1.0.4 kt-legacy
==15.0.6.1 libclang
==0.39.1 llvmlite
==1.0.0 locket
==3.4.1 Markdown
==2.1.2 MarkupSafe
==3.6.3 matplotlib
==0.1.6 matplotlib-inline
==2.0.4 mistune
==1.0.4 msgpack
==0.4.3 mypy-extensions
==0.4.8 nbclassic
==0.7.2 nbclient
==7.2.8 nbconvert
==5.7.3 nbformat
==0.8.11 nbsphinx
==1.5.6 nest-asyncio
==2.8.8 networkx
==6.5.2 notebook
==0.2.2 notebook-shim
==0.56.4 numba
==2.8.4 numexpr
==1.23.5 numpy
==3.2.2 oauthlib
==4.7.0.68 opencv-python
==3.0.10 openpyxl
==3.3.0 opt-einsum
==23.0 packaging
==1.5.3 pandas
==1.5.0 pandocfilters
==0.8.3 parso
==1.3.0 partd
==0.10.3 pathspec
==0.5.3 patsy
==4.8.0 pexpect
==0.7.5 pickleshare
==9.4.0 Pillow
==0.6.1 PIMS
==2.6.2 platformdirs
==1.0.0 pluggy
==0.9.1 pockets
==0.8.2 POT
==0.15.0 prometheus-client
==3.0.36 prompt-toolkit
==3.19.6 protobuf
==5.9.4 psutil
==0.7.0 ptyprocess
==0.2.2 pure-eval
==1.11.0 py
==9.0.0 py-cpuinfo
==0.4.8 pyasn1
==0.2.8 pyasn1-modules
==2.21 pycparser
==6.3.0 pydocstyle
==2.14.0 Pygments
==0.5.8 pynndescent
==3.0.9 pyparsing
==0.19.3 pyrsistent
==7.2.1 pytest
==2.8.2 python-dateutil
==2.0.4 python-json-logger
==2022.7.1 pytz
==6.0 PyYAML
==25.0.0 pyzmq
==5.4.0 qtconsole
==2.3.0 QtPy
==2022.10.31 regex
==2.28.2 requests
==1.3.1 requests-oauthlib
==0.1.4 rfc3339-validator
==0.1.1 rfc3986-validator
==4.9 rsa
==1.1.7 ruptures
==1.2.0 scikit-learn
==1.10.0 scipy
==0.11.2 seaborn
==1.2.5 seglearn
==1.8.0 Send2Trash
==7.1.0 setuptools-scm
==0.41.0 shap
==1.8.5.post1 Shapely
==1.16.0 six
==0.0.7 slicer
==1.1.0 slicerator
==1.3.0 sniffio
==2.2.0 snowballstemmer
==2.4.0 sortedcontainers
==2.3.2.post1 soupsieve
==1.2.0 spektral
==5.3.0 Sphinx
==0.8.0 sphinx-press-theme
==1.1.1 sphinx-rtd-theme
==1.0.2 sphinxcontrib-devhelp
==2.0.0 sphinxcontrib-htmlhelp
==1.0.1 sphinxcontrib-jsmath
==0.7 sphinxcontrib-napoleon
==1.0.3 sphinxcontrib-qthelp
==1.1.5 sphinxcontrib-serializinghtml
==1.0.3 sphinxcontrib.applehelp
==0.0.3 sphynx
==0.6.2 stack-data
==0.5.0 statannotations
==0.13.5 statsmodels
==21.5.0 structlog
==3.8.0 tables
==8.1.0 tenacity
==2.11.2 tensorboard
==0.6.1 tensorboard-data-server
==1.8.1 tensorboard-plugin-wit
==0.19.0 tensorflow-addons
==2.11.0 tensorflow-estimator
==0.17.0 tensorflow-probability
==2.2.0 termcolor
==0.17.1 terminado
==3.1.0 threadpoolctl
==2022.10.10 tifffile
==1.2.1 tinycss2
==2.0.1 tomli
==0.12.0 toolz
==6.2 tornado
==4.64.1 tqdm
==5.8.1 traitlets
==2.13.3 typeguard
==4.4.0 typing-extensions
==0.5.3 umap-learn
==1.2.0 uri-template
==1.26.14 urllib3
==0.2.6 wcwidth
==1.12 webcolors
==0.5.1 webencodings
==1.4.2 websocket-client
==2.2.2 Werkzeug
==4.0.5 widgetsnbextension
==1.14.1 wrapt
==3.11.0 zipp
>=2.2.0 tensorflow
==3.5.0 keras-tcn
>=2.5.0 tensorflow-macos
==1.0 keras-tcn-macos


زبان مورد نیاز

مقدار نام
>3.8 Python


نحوه نصب


نصب پکیج whl deepof-0.2:

    pip install deepof-0.2.whl


نصب پکیج tar.gz deepof-0.2:

    pip install deepof-0.2.tar.gz