معرفی شرکت ها


deepnog-1.2.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Deep learning tool for protein orthologous group assignment
ویژگی مقدار
سیستم عامل -
نام فایل deepnog-1.2.3
نام deepnog
نسخه کتابخانه 1.2.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Roman Feldbauer
ایمیل نویسنده roman.feldbauer@univie.ac.at
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/deepnog/
مجوز -
![Linux/macOS builds on Actions]( https://github.com/univieCUBE/deepnog/workflows/deepnog%20CI/badge.svg) [![Windows builds on AppVeyor]( https://ci.appveyor.com/api/projects/status/ccdysyv0o2gey6iu/branch/master?svg=true)]( https://ci.appveyor.com/project/VarIr/deepnog/branch/master) [![codecov]( https://codecov.io/gh/univieCUBE/deepnog/branch/master/graph/badge.svg)]( https://codecov.io/gh/univieCUBE/deepnog) [![Language grade: Python]( https://img.shields.io/lgtm/grade/python/g/univieCUBE/deepnog.svg?logo=lgtm&logoWidth=18)]( https://lgtm.com/projects/g/univieCUBE/deepnog/context:python) [![Documentation Status]( https://readthedocs.org/projects/deepnog/badge/?version=latest)]( https://deepnog.readthedocs.io/en/latest/?badge=latest) [![PyPI version]( https://badge.fury.io/py/deepnog.svg)]( https://badge.fury.io/py/deepnog) [![Anaconda-Server Badge]( https://anaconda.org/bioconda/deepnog/badges/version.svg)]( https://anaconda.org/bioconda/deepnog) ![PyPI - Python Version]( https://img.shields.io/pypi/pyversions/deepnog?style=flat-square) # DeepNOG: protein orthologous groups assignment Assign proteins to orthologous groups (eggNOG 5) on CPUs or GPUs with deep networks. DeepNOG is much faster than alignment-based methods, providing accuracy similar to HMMER. ## Installation guide The easiest way to install DeepNOG is to obtain it from PyPI: ``` bash pip install deepnog ``` Alternatively, you can clone or download bleeding edge versions from GitHub and run ``` bash pip install /path/to/DeepNOG ``` If you plan to extend DeepNOG as a developer, run ``` bash pip install -e /path/to/DeepNOG ``` instead. ``deepnog`` can also be installed from bioconda like this: ``` bash conda config --add channels pytorch conda install pytorch deepnog ``` ## Usage Call the `deepnog` command line tool with a protein sequence file in FASTA format. Example usages: * `deepnog infer proteins.faa` * Predicted groups of proteins in proteins.faa will be written to the console. By default, eggNOG5 bacteria level is used. * `deepnog infer proteins.faa --out prediction.csv` * Write into prediction.csv instead * `deepnog infer proteins.faa -db eggNOG5 -t 1236 -V 3 -c 0.99` * Predict EggNOG5 Gammaproteobacteria (tax 1236) groups * discard individual predictions below 99 % confidence * Show detailed progress report (-V 3) * `deepnog train train.fa val.fa train.csv val.csv -a deepnog -e 15 --shuffle -r 123 -db eggNOG5 -t 3 -o /path/to/outdir` * Train a model for the (hypothetical) tax level 3 of eggNOG5 with a fixed random seed for reproducible results. The individual models for OG predictions are not stored on GitHub or PyPI, because they exceed file size limitations (up to 200M). `deepnog` automatically downloads the models, and puts them into a cache directory (default `~/deepnog_data/`). You can change this directory by setting the `DEEPNOG_DATA` environment variable. For help and advanced options, call `deepnog --help`, and `deepnog infer --help` or `deepnog train --help` for specific options for inference or training, respectively. See also the [user & developer guide](doc/guide.pdf). ## File formats supported Preferred: FASTA (raw, .gz, or .xz) DeepNOG supports protein sequences stored in all file formats listed in [https://biopython.org/wiki/SeqIO](https://biopython.org/wiki/SeqIO), but is tested for the FASTA-file format only. ## Databases currently supported - eggNOG 5.0 * taxonomic level 1 (root level) * taxonomic level 2 (bacteria level) * For >100 additional eggNOG 5.0 levels, consult the [docs](https://deepnog.readthedocs.io/en/latest/documentation/models.html). - COG 2020 - (for additional databases/levels, please create an issue on Github, or train a model yourself---new in v1.2) ## Deep network architectures currently supported * DeepNOG * DeepFam (no precomputed model currently available) ## Required packages ``deepnog`` builds upon the following packages: * PyTorch * NumPy * pandas * scikit-learn * tensorboard * Biopython * PyYAML * tqdm * pytest (for tests only) See also `requirements/*.txt` for platform-specific recommendations (sometimes, specific versions might be required due to platform-specific bugs in the deepnog requirements) ## Acknowledgements This research is supported by the Austrian Science Fund (FWF): P27703, P31988; and by the GPU grant program of Nvidia corporation. ## Citation If you use DeepNOG, please consider citing our research article ([click here for bibtex](https://academic.oup.com/Citation/Download?resourceId=6050698&resourceType=3&citationFormat=2)): Roman Feldbauer, Lukas Gosch, Lukas Lüftinger, Patrick Hyden, Arthur Flexer, Thomas Rattei, DeepNOG: Fast and accurate protein orthologous group assignment, *Bioinformatics*, 2020, btaa1051, https://doi.org/10.1093/bioinformatics/btaa1051


نیازمندی

مقدار نام
- numpy
- pandas
- scikit-learn
>=1.2 torch
- Biopython
- PyYAML
- tqdm
- tensorboard


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl deepnog-1.2.3:

    pip install deepnog-1.2.3.whl


نصب پکیج tar.gz deepnog-1.2.3:

    pip install deepnog-1.2.3.tar.gz