معرفی شرکت ها


deepnlp-cerelab-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Natural language processing package based on modern deep learning methods
ویژگی مقدار
سیستم عامل -
نام فایل deepnlp-cerelab-1.0.2
نام deepnlp-cerelab
نسخه کتابخانه 1.0.2
نگهدارنده ['Dat Tien Nguyen']
ایمیل نگهدارنده ['nduc0231@gmail.com']
نویسنده Dat Tien Nguyen and Hieu Trung Pham
ایمیل نویسنده nduc0231@gmail.com
آدرس صفحه اصلی https://github.com/hieupth/deepnlp
آدرس اینترنتی https://pypi.org/project/deepnlp-cerelab/
مجوز -
# DeepNLP This is a new natural language processing library based on modern deep learning methods. The library focus on basic NLP tasks such as: POS (part of speech), NER (named entity recognition) and DP (dependency parsing). The main language is English but we are working hard to support Vietnamese and others in the near future. ## Installation 🔥 - This repository is tested on python 3.7+ and Tensorflow 2.8+ - Deepnlp can be installed using pip as follows: ``` pip install deepnlp-cerelab ``` - Deepnlp can also be installed from source with the following commands: ``` git clone https://github.com/hieupth/deepnlp.git cd deepnlp/ pip install -e . ``` ## Tutorials 🥮 - [1. Sentence Segmentation](#sentence_tokenize) - [2. Word Tokenizer](#word_tokenize) - [3. Install and load pretrained model and vocabs](#pretrained) - [4. POS Tagging](#xpos) - [5. Named Entity Recognition](#ner) - [6. Dependency Parsing](#parser) - [7. Multil Task](#multi) - [8. Clear Cache](#cache) - [9. List of pretrained models](#list_pretrained) ### 1. Sentence Segmentation <a name= 'sentence_tokenize'></a> Usage ```python >>> import deepnlp >>> text = """\ Mr. Smith bought cheapsite.com for 1.5 million dollars, i.e. he paid a lot for it. Did he mind? Adam Jones Jr. thinks he didn't. In any case, this isn't true... Well, with a probability of .9 it isn't. """ >>> deepnlp.sentence_tokenize(text) ['Mr. Smith bought cheapsite.com for 1.5 million dollars, i.e. he paid a lot for it.', 'Did he mind?', "Adam Jones Jr. thinks he didn't.", "In any case, this isn't true...", "Well, with a probability of .9 it isn't.", ''] ``` ### 2. Word Tokenize Usage <a name= 'word_tokenize'> </a> ```python >>> import deepnlp >>> text = "I have an apple." >>> deepnlp.word_tokenize(text) ['I', 'have', 'an', 'apple', '.'] ``` ### 3. Install and load pretrained model and vocabs - Install pretrained model and vocabs <a name= 'pretrained'></a> ```python >>> import deepnlp >>> deepnlp.download('deepnlp_eng') ``` - Or you can also install pretrained model and vocabs independently of each other ```python >>> import deepnlp >>> deepnlp.download_model('deepnlp_eng') >>> deepnlp.download_vocabs('deepnlp_eng') ``` - Load models and vocabs ```python >>> import deepnlp >>> model = deepnlp.load_model('deepnlp_eng') >>> vocabs= deepnlp.load_vocabs('deepnlp_eng', task= 'multi') # pos, ner, dp ``` ### 4. POS Tagging <a name= 'xpos'></a> - With `PosTagger` class ```python >>> import deepnlp >>> model= deepnlp.PosTagger('deepnlp_eng') >>> model model_name: deepnlp_eng, vocab_name: deepnlp_eng, tokenizer_name: distilroberta-base >>> output= model.inference('I have an apple.', device= 'cpu') # default device = 'cpu' >>> output <deepnlp.utils.data_struct.TokenClassificationData at 0x7fbc3ddbab90> >>> output.value() {'Sequence': 'I have an apple.', 'Inference': {'I': {'score': 0.9175689, 'label': 'PRP'}, 'have': {'score': 0.9232193, 'label': 'VBP'}, 'an': {'score': 0.9158458, 'label': 'DT'}, 'apple': {'score': 0.86957675, 'label': 'NN'}, '.': {'score': 0.8892631, 'label': '.'}}} >>> deepnlp.print_out([output]) I have an apple. 1 I PRP 2 have VBP 3 an DT 4 apple NN 5 . . ``` - With `pipeline` class ```python >>> import deepnlp >>> model= deepnlp.load_model('deepnlp_eng') >>> pipeline= deepnlp.pipeline(model, task= 'pos_tagger') >>> output= pipeline("I have an apple.", device= 'cpu') # default device = 'cpu' >>> deepnlp.print_out([output]) I have an apple. 1 I PRP 2 have VBP 3 an DT 4 apple NN 5 . . ``` ### 5. Named Entity Recognition <a name= 'ner'></a> With `NerTagger` class ```python >>> import deepnlp >>> model = deepnlp.NerTagger('deepnlp_eng') >>> output= model.inference('Please confirm your song choice: Same Old War, playing on the kitchen speaker', device= 'cpu') # default device = 'cpu' output <deepnlp.utils.data_struct.TokenClassificationData at 0x7f69d9504750> >>> output.value() {'Sequence': 'Please confirm your song choice: Same Old War, playing on the kitchen speaker', 'Inference': {'Same': {'score': 0.922773, 'label': 'B-MISC'}, 'Old': {'score': 0.9353856, 'label': 'I-MISC'}, 'War': {'score': 0.92017937, 'label': 'I-MISC'}}} >>> deepnlp.print_out([output], del_prefix_ner= False) # if you set del_prefix_ner= True, B-MISC or I-MISC will become MISC Please confirm your song choice: Same Old War, playing on the kitchen speaker 1 Please O 2 confirm O 3 your O 4 song O 5 choice O 6 Same B-MISC 7 Old I-MISC 8 War I-MISC 9 , O 10 playing O 11 on O 12 the O 13 kitchen O 14 speaker O ``` With `pipeline` class ```python >>> import deepnlp >>> model= deepnlp.load_model('deepnlp_eng') >>> pipeline= deepnlp.pipeline(model, task= 'ner_tagger') >>> output= pipeline("Please confirm your song choice: Same Old War, playing on the kitchen speaker") >>> deepnlp.print_out([output], del_prefix_ner= True, device= 'cpu') # default device = 'cpu' Please confirm your song choice: Same Old War, playing on the kitchen speaker 1 Please O 2 confirm O 3 your O 4 song O 5 choice O 6 Same MISC 7 Old MISC 8 War MISC 9 , O 10 playing O 11 on O 12 the O 13 kitchen O 14 speaker O ``` ### 6. Dependency Parsing <a name= 'parser'></a> With `DPParser` class ```python >>> import deepnlp >>> model = deepnlp.DPParser('deepnlp_eng') >>> output= model.inference("I have an apple.", device= 'cpu') # default device = 'cpu' >>> output <deepnlp.utils.data_struct.ParserData at 0x7f69da3125d0> >>> output.value() {'Sequence': 'I have an apple.', 'Inference': {'xpos': ['PRP', 'VBP', 'DT', 'NN', '.'], 'head': [2, 0, 4, 2, 2], 'rela': ['nsubj', 'root', 'det', 'obj', 'punct']}} >>> deepnlp.print_out([output]) I have an apple. 1 I PRP 2 nsubj 2 have VBP 0 root 3 an DT 4 det 4 apple NN 2 obj 5 . . 2 punct ``` With `pipeline` class ```python >>> import deepnlp >>> model= deepnlp.load_model('deepnlp_eng') >>> pipeline= deepnlp.pipeline(model, task= 'dp_parser') >>> output= pipeline("I have an apple.", device= 'cpu') # default device = 'cpu' >>> deepnlp.print_out([output]) I have an apple. 1 I PRP 2 nsubj 2 have VBP 0 root 3 an DT 4 det 4 apple NN 2 obj 5 . . 2 punct ``` ### 7. Multi Task <a name= 'multi'></a> With `MultiTask` ```python >>> import deepnlp >>> model = deepnlp.MultiTask('deepnlp_eng') >>> output= model.inference("Please confirm your song choice: Same Old War, playing on the kitchen speaker", device= 'cpu') # default device = 'cpu' >>> output <deepnlp.utils.data_struct.MultiData at 0x7f69da8f7650> >>> deepnlp.print_out([output]) Please confirm your song choice: Same Old War, playing on the kitchen speaker 1 Please UH O 2 discourse 2 confirm VB O 0 root 3 your PRP$ O 5 nmod:poss 4 song NN O 5 compound 5 choice NN O 2 obj 6 Same JJ MISC 8 amod 7 Old NNP MISC 8 compound 8 War NNP MISC 2 obj 9 , , O 2 punct 10 playing VBG O 2 advcl 11 on IN O 14 case 12 the DT O 14 det 13 kitchen NN O 14 compound 14 speaker NN O 10 obl ``` With `pipeline` ```python >>> import deepnlp >>> model= deepnlp.load_model('deepnlp_eng') >>> pipeline= deepnlp.pipeline(model, task= 'multi') >>> output= pipeline("Please confirm your song choice: Same Old War, playing on the kitchen speaker", device= 'cpu') # default device = 'cpu' >>> deepnlp.print_out([output]) Please confirm your song choice: Same Old War, playing on the kitchen speaker 1 Please UH O 2 discourse 2 confirm VB O 0 root 3 your PRP$ O 5 nmod:poss 4 song NN O 5 compound 5 choice NN O 2 obj 6 Same JJ MISC 8 amod 7 Old NNP MISC 8 compound 8 War NNP MISC 2 obj 9 , , O 2 punct 10 playing VBG O 2 advcl 11 on IN O 14 case 12 the DT O 14 det 13 kitchen NN O 14 compound 14 speaker NN O 10 obl ``` ### 8. Clear Cache <a name= 'cache'></a> - Remove pretrained model and vocabs `deepnlp_eng` ```python >>> deepnlp.clear_cache('deepnlp_eng') ``` - Or ```python >>> deepnlp.clear_model('deepnlp_eng') >>> deepnlp.clear_vocabs('deepnlp_eng') ``` ### 9. List of pretrained models <a name= 'list_pretrained'></a> - `deppnlp_eng` - support for English: <a href= 'https://drive.google.com/drive/folders/1ub0T9T70lcrAq5C3fH3fy8QqCgkYSZlm?usp=sharing'>download pretrained model</a> - <a href= 'https://drive.google.com/drive/folders/1SS7ra-xnaAQ2Y5KeR5ulQAqu-OtPKbhJ?usp=sharing'>download vocabs </a> - `deepnlp_vie` - support for Vietnamese: Will be updated in the future ## License [Apache 2.0 License](https://github.com/hieupth/deepnlp). <br> Copyright &copy; 2022 [Hieu Pham](https://github.com/hieupth). All rights reserved.


نیازمندی

مقدار نام
>=4.21.3 transformers
>=2.8.2 tensorflow
- numpy
>=4.4.0 gdown


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl deepnlp-cerelab-1.0.2:

    pip install deepnlp-cerelab-1.0.2.whl


نصب پکیج tar.gz deepnlp-cerelab-1.0.2:

    pip install deepnlp-cerelab-1.0.2.tar.gz