معرفی شرکت ها


deepneighbor-0.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

embedding-based item nearest neighborhoods extraction
ویژگی مقدار
سیستم عامل -
نام فایل deepneighbor-0.3.1
نام deepneighbor
نسخه کتابخانه 0.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yufeng Wang
ایمیل نویسنده louiswang524@gmail.com
آدرس صفحه اصلی https://github.com/LouisBIGDATA/deepneighbor
آدرس اینترنتی https://pypi.org/project/deepneighbor/
مجوز -
# DeepNeighbor <br /> <p align="center"> <a href="https://github.com/othneildrew/Best-README-Template"> <img src="deepneighbor_logo.png" alt="Logo" width="120" height="120"> </a> <p align="center"> Embedding-based Retrieval for ANN Search and Recommendations! <br /> <a href="https://colab.research.google.com/drive/1j6uWt_YYyHBQDK7EN3f5GTTZTmNn2Xc5?usp=sharing">View Demo</a> · <a href="https://github.com/Lou1sWang/deepneighbor/issues">Report Bug</a> · <a href="https://github.com/Lou1sWang/deepneighbor/issues">Request Feature</a> </p> </p> [![Python Versions](https://img.shields.io/pypi/pyversions/deepneighbor.svg)](https://pypi.org/project/deepneighbor) [![PyPI Version](https://img.shields.io/pypi/v/deepneighbor.svg)](https://pypi.org/project/deepneighbor) [![license](https://img.shields.io/github/license/LouisBIGDATA/deepneighbor.svg?maxAge=2592000)](https://github.com/LouisBIGDATA/deepneighbor) ![GitHub repo size](https://img.shields.io/github/repo-size/Lou1sWang/deepneighbor) [![Open Source? Yes!](https://badgen.net/badge/Open%20Source%20%3F/Yes%21/blue?icon=github)](https://github.com/Lou1sWang/deepneighbor/) [![Downloads](https://pepy.tech/badge/deepneighbor)](https://pepy.tech/project/deepneighbor) [![GitHub Issues](https://img.shields.io/github/issues/Lou1sWang/deepneighbor.svg)](https://github.com/Lou1sWang/deepneighbor/issues) [![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/Lou1sWang/deepneighbor/graphs/commit-activity) [![Ask Me Anything !](https://img.shields.io/badge/Ask%20me-anything-1abc9c.svg)](louiswang524@gmail.com) [![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/) --- DeepNeighbor is a **High-level**,**Flexible** and **Extendible** package for embedding-based information retrieval from user-item interaction logs. Just as the name suggested, **'deep'** means deep learning models to get user/item embeddings, while **'neighbor'** means approximate nearest neighbor search in the embedding space.<br> It mainly has two parts : Embed step and Search step by the following codes:<br> <br>`model = Embed(data_path); model.train()`,which generates embeddings for users and items (Deep), <br> `model.search()`, which looks for Approximate nearest neighbor for seed user/item (Neighbor) . <br> ### Install ```python pip install deepneighbor ``` ### How To Use ```python from deepneighbor import Embed model = Embed(data,model='gat') model.train() model.search(seed = 'Louis', k=10) ``` ### Input format The input data for the **Embed()** should be a (*.csv or *.txt ) file path (e.g. '\data\data.csv')with two columns in order: 'user' and 'item'. For each user, the item are recommended to be ordered by time. ### Models & parameters in Embed() - [x] Word2Vec `w2v` - [ ] Factorization Machines `fm` - [ ] Deep Semantic Similarity Model - [ ] Siamese Network with triple loss - [ ] Deepwalk - [ ] Graph convolutional network - [x] Neural Graph Collaborative Filtering algorithm `ngcf` - [ ] Matrix factorization `mf` - [x] Graph attention network `gat` ### Model Parameters #### deepwalk ```python model = Embed(data, model = 'deepwalk') model.train(window_size=5, workers=1, iter=1 dimensions=128) ``` - ```window_size``` Skip-gram window size. - ```workers```Use these many worker threads to train the model (=faster training with multicore machines). - ```iter``` Number of iterations (epochs) over the corpus. - ```dimensions``` Dimensions for the node embeddings #### graph attention network ```python model = Embed(data, model = 'gat') model.train(window_size=5, learning_rate=0.01, epochs = 10, dimensions = 128, num_of_walks=80, beta=0.5, gamma=0.5,) ``` - ```window_size``` Skip-gram window size. - ```learning_rate``` learning rate for optimizing graph attention network - ```epochs``` Number of gradient descent iterations. - ```dimensions``` Dimensions for the embeddings for each node (user/item) - ```num_of_walks```Number of random walks. - ```beta``` and ```gamma```Regularization parameter. ### How To Search #### ```model.search(seed, k)``` - ```seed``` The Driver for the algorithms - ```k``` Number of Nearest Neighbors. ### Examples Open [Colab](https://colab.research.google.com/drive/1j6uWt_YYyHBQDK7EN3f5GTTZTmNn2Xc5?usp=sharing) to run the example with facebook data. ### Contact Please contact louiswang524@gmail.com for collaboration or providing feedbacks. ### License This project is under MIT License, please see [here](LICENSE) for details.


نیازمندی

مقدار نام
- h5py
- requests
==3.7.0 gensim
- tqdm
- numpy
- scikit-learn
- pandas
- annoy
- dgl
>=1.1.0 torch


زبان مورد نیاز

مقدار نام
>=3.4 Python


نحوه نصب


نصب پکیج whl deepneighbor-0.3.1:

    pip install deepneighbor-0.3.1.whl


نصب پکیج tar.gz deepneighbor-0.3.1:

    pip install deepneighbor-0.3.1.tar.gz