معرفی شرکت ها


deepmreye-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

MR-based eye tracker without eye tracking
ویژگی مقدار
سیستم عامل -
نام فایل deepmreye-0.1.1
نام deepmreye
نسخه کتابخانه 0.1.1
نگهدارنده ['Markus Frey']
ایمیل نگهدارنده ['markus.frey1@gmail.com']
نویسنده Markus Frey
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/DeepMReye/DeepMReye
آدرس اینترنتی https://pypi.org/project/deepmreye/
مجوز LGPL-3.0
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](http://www.gnu.org/licenses/gpl-3.0) ![py38 status](https://img.shields.io/badge/python3.8-supported-green.svg) ![Build Status](https://github.com/DeepMReye/DeepMReye/actions/workflows/main.yml/badge.svg) [![NatNeuro Paper](https://img.shields.io/badge/DOI-10.1038%2Fs41593--021--00947--w-blue)](https://doi.org/10.1038/s41593-021-00947-w) ![Logo](media/deepmreye_logo.png) # DeepMReye: magnetic resonance-based eye tracking using deep neural networks This [Jupyter Notebook](./notebooks/deepmreye_example_usage.ipynb) provides a step-by-step walkthrough of the code. It includes eyeball coregistration, voxel extraction, model training and test as well as basic performance measures. Alternatively, here is a [Colab Notebook](https://colab.research.google.com/drive/1kYVyierbKdNZ3RY4_pbACtdWEw7PKQuz?usp=sharing). This [Data Repository](https://osf.io/mrhk9/) includes exemplary data for model training and test, source data of all paper figures as well as pre-trained model weights. Moreover, here are additional [User Recommendations](https://deepmreye.slite.com/p/channel/MUgmvViEbaATSrqt3susLZ/notes/kKdOXmLqe) as well as a [Frequently-Asked-Questions (FAQ)](https://deepmreye.slite.com/p/channel/MUgmvViEbaATSrqt3susLZ/notes/sargIAQ6t) page. If you have other questions, please reach out to us. ![deepMReye video](media/deepMReye_video.gif) ## Installation ### Option 1: Pip install #### Pip installation Install DeepMReye with a CPU/GPU version of [TensorFlow](https://www.tensorflow.org/install/) using the following command. ``` pip install deepmreye ``` #### Anaconda / Miniconda installation To encapsulate DeepMReye in a virtual environment install with the following commands: ``` conda create --name deepmreye python=3.9 conda activate deepmreye pip install deepmreye ``` The tensorflow version supports both CPU and GPU instructions. Note that you might need to install cudnn first (conda install -c conda-forge cudnn). If installation of [ANTsPy](https://github.com/ANTsX/ANTsPy) fails try to manually install it via: ``` git clone https://github.com/ANTsX/ANTsPy cd ANTsPy pip install CMake python3 setup.py install ``` ### Option 2: Colab We provide a [Colab Notebook](https://colab.research.google.com/drive/1kYVyierbKdNZ3RY4_pbACtdWEw7PKQuz?usp=sharing) showcasing model training and evaluation on a GPU provided by Google Colab. To use your own data, preprocess your data locally and upload only the extracted eyeball voxels. This saves space and avoids data privacy issues. See the [Jupyter Notebook](./notebooks/deepmreye_example_usage.ipynb) for the preprocessing and eyeball-extraction code. [![Model Training & Evaluation](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kYVyierbKdNZ3RY4_pbACtdWEw7PKQuz?usp=sharing) ![Colab Walkthrough](media/colab_walkthrough.gif) ### Option 3: Docker Build the image locally ```bash docker build . -t deepmreye:latest ``` Use deepMReye in the docker via a jupyterlab: ```bash mkdir -p $PWD/notebooks docker run -it --rm \ --publish 8888:8888 \ --volume $PWD/notebooks:/home/neuro/notebooks \ deepmreye:latest \ jupyter-lab --no-browser --ip 0.0.0.0 ``` ### Data formats The <u>**fMRI data**</u> should be organized in 4D NIFTI files (.nii), containing the realigned 3D images acquired over time. The pipeline then extracts the eyeball voxels automatically and saves them as Python Pickle files, which serve as model input. For model training, you additionally need <u>**training labels**</u>, a numpy array containing 10 gaze coordinates per functional volume. These gaze coordinates can either be camera-based eye-tracking labels or the coordinates of a fixation target, and many file formats can be easily read (e.g. .npy, .npz, .mat, .csv etc.). Please see our [FAQ](https://deepmreye.slite.com/p/channel/MUgmvViEbaATSrqt3susLZ/notes/sargIAQ6t) page for more details on data formats and preprocessing. ## Hardware requirements The GPU version of DeepMReye requires a NVIDIA GPU. ## Software requirements The following python dependencies are being automatically installed when installing DeepMReye (specified in requirements.txt): ``` tensorflow-gpu (2.2.0) numpy (1.19.1) pandas (1.0.5) matplotlib (3.2.2) scipy (1.5.0) ipython (7.13.0) plotly (4.14.3) ``` Version in parentheses indicate the ones used for testing the framework. Its extensively tested on Linux 16.04 but should run on all OS (Windows, Mac, Linux) supporting a Python version >3.6 and pip. It is recommended to install the framework and dependencies in a virtual environment (e.g. conda). ## Correspondence If you have questions, comments or inquiries, please check out the online [User documention](https://deepmreye.slite.com/api/s/channel/MUgmvViEbaATSrqt3susLZ/DeepMReye%3A%20Documentation) and reach out to us: markus.frey[at]ntnu.no & matthias.nau[at]ntnu.no


نیازمندی

مقدار نام
- numpy
- pandas
- matplotlib
- scipy
- plotly
- scikit-learn
- antspyx
- tensorflow
- jupyter
>=2.0 sphinx
- sphinx-argparse
- sphinx-rtd-theme
>=3.7 flake8
>=1.5 flake8-docstrings
>=5.3 pytest
- pytest-cov
>=2.0 sphinx
- sphinx-argparse
- sphinx-rtd-theme
>=3.7 flake8
>=1.5 flake8-docstrings
>=5.3 pytest
- pytest-cov
>=3.7 flake8
>=1.5 flake8-docstrings


زبان مورد نیاز

مقدار نام
>=3.8.0 Python


نحوه نصب


نصب پکیج whl deepmreye-0.1.1:

    pip install deepmreye-0.1.1.whl


نصب پکیج tar.gz deepmreye-0.1.1:

    pip install deepmreye-0.1.1.tar.gz