معرفی شرکت ها


deepml-2.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Library for training deep neural nets in Pytorch.
ویژگی مقدار
سیستم عامل -
نام فایل deepml-2.0.0
نام deepml
نسخه کتابخانه 2.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sagar Rathod
ایمیل نویسنده sagar100rathod@gmail.com
آدرس صفحه اصلی https://github.com/sagar-rathod/PytorchDeepML
آدرس اینترنتی https://pypi.org/project/deepml/
مجوز -
# deep-ml ![Licence](https://img.shields.io/badge/License-MIT-green) ![Python](https://img.shields.io/badge/Python-3.6%2B-orange) [![Downloads](https://static.pepy.tech/personalized-badge/deepml?period=total&units=international_system&left_color=black&right_color=brightgreen&left_text=Downloads)](https://pepy.tech/project/deepml) ![Contributions welcome](https://img.shields.io/badge/Contributions-welcome-yellow) This library is a wrapper around pytorch and useful for solving image classification and semantic segmentation problems. ### Features 1. Easy to use wrapper around pytorch so that you can focus on training and validating your model. 2. Integrates with Tensorboard to use it to monitor metrics while model trains. 3. Quickly visualize your model's predictions. 4. Following are different types of machine learning tasks available to choose from <strong>deepml.tasks</strong>: * ImageClassification * MultiLabelImageClassification * ImageRegression * Segmentation # Installation Before installing **deepml**, it is recommended to refer [pytorch](https://pytorch.org/) official page for **torch** installation. ### Pypi ```bash pip install deepml ``` # Usage #### 1. Create torch data loaders. ```python import torch train_loader = # your train loader instance of torch.utils.data.DataLoader val_loader = # your val loader instance of torch.utils.data.DataLoader ``` #### 2. Create your deep neural net architecture. ```python import torchvision # instance of torch.nn.Module model = torchvision.models.vgg.vgg19(pretrained=False) ``` #### 3. Choose your machine learning task. ```python from deepml.tasks import ImageClassification classification = ImageClassification(model, model_dir="experiment1", load_saved_model=False, classes=['class1', 'class2', 'class3']) ``` #### 4. Define optimizer, loss function and lr scheduler. ```python optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) # loss function criterion = torch.nn.CrossEntropyLoss() # Choose lr_scheduler if any lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.1) ``` #### 5. Quickly start training your model using deepml.train.Learner class. ```python from deepml.train import Learner # instantiate learner class learner = Learner(classification, optimizer, criterion) # Fit Learner learner.fit(train_loader, val_loader, epochs=10, lr_scheduler=lr_scheduler) ``` ##### 6. Use tensorboard to visualize model loss and metrics. ###### On Google Colab or Jupyter Notebook: ```bash %load_ext tensorboard %tensorboard --logdir 'experiment1' ``` ###### On OS: ```bash tensorboard --logdir 'experiment1' ``` #### 7. Quickly see some samples predictions from data loader. ```python learner.show_predictions(val_loader, samples=30, cols=6, figsize=(20, 20)) ``` #### 8. Run prediction on data loader. ```python predictions, targets = learner.predict(val_loader) ``` # Examples Check out the below google colaboratory notebook examples: 1. [Image Regression](https://github.com/sagar-rathod/deep-ml/blob/master/examples/Image_Regression_Example.ipynb) 2. [Image Classification](https://github.com/sagar-rathod/deep-ml/blob/master/examples/Image_Classification_Example.ipynb) 3. [Binary Semantic Segmentation (Road Segmentation on Satellite Imagery)](https://github.com/sagar-rathod/deep-ml/blob/master/examples/Road_Segmentation_Example.ipynb) 4. [Multiclass Semantic Segmentation (Scene Understanding on Street Imagery)](https://github.com/sagar-rathod/deep-ml/blob/master/examples/Road_Segmentation_Example.ipynb) # Contributing deepml is an open source project and anyone is welcome to contribute. An easy way to get started is by suggesting a new enhancement on the Issues. If you have found a bug, then either report this through Issues, or even better, make a fork of the repository, fix the bug and then create a Pull Request to get the fix into the master branch. # License deepml is available under the MIT License. For details see the [LICENSE](https://github.com/sagar-rathod/PytorchDeepML/blob/master/LICENSE) file.


نیازمندی

مقدار نام
>=1.14.0 tensorboard
>=0.22 scikit-learn
>=1.16 numpy
>=0.25.3 pandas
>=2.2.5 matplotlib


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl deepml-2.0.0:

    pip install deepml-2.0.0.whl


نصب پکیج tar.gz deepml-2.0.0:

    pip install deepml-2.0.0.tar.gz