معرفی شرکت ها


deepmatcher-0.1.2.post2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A deep learning package for entity matching
ویژگی مقدار
سیستم عامل -
نام فایل deepmatcher-0.1.2.post2
نام deepmatcher
نسخه کتابخانه 0.1.2.post2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sidharth Mudgal, Han Li
ایمیل نویسنده uwmagellan@gmail.com
آدرس صفحه اصلی http://deepmatcher.ml
آدرس اینترنتی https://pypi.org/project/deepmatcher/
مجوز BSD
DeepMatcher ============= .. image:: https://travis-ci.org/anhaidgroup/deepmatcher.svg?branch=master :target: https://travis-ci.org/anhaidgroup/deepmatcher .. image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg :target: https://opensource.org/licenses/BSD-3-Clause DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and utilities that enable you to train and apply state-of-the-art deep learning models for entity matching in less than 10 lines of code. The models are also easily customizable - the modular design allows any subcomponent to be altered or swapped out for a custom implementation. As an example, given labeled tuple pairs such as the following: .. image:: https://raw.githubusercontent.com/anhaidgroup/deepmatcher/master/docs/source/_static/match_input_ex.png DeepMatcher uses labeled tuple pairs and trains a neural network to perform matching, i.e., to predict match / non-match labels. The trained network can then be used to obtain labels for unlabeled tuple pairs. Paper and Data **************** For details on the architecture of the models used, take a look at our paper `Deep Learning for Entity Matching`_ (SIGMOD '18). All public datasets used in the paper can be downloaded from the `datasets page <Datasets.md>`__. Quick Start: DeepMatcher in 30 seconds ****************************************** There are four main steps in using DeepMatcher: 1. Data processing: Load and process labeled training, validation and test CSV data. .. code-block:: python import deepmatcher as dm train, validation, test = dm.data.process(path='data_directory', train='train.csv', validation='validation.csv', test='test.csv') 2. Model definition: Specify neural network architecture. Uses the built-in hybrid model (as discussed in section 4.4 of `our paper <http://pages.cs.wisc.edu/~anhai/papers1/deepmatcher-sigmod18.pdf>`__) by default. Can be customized to your heart's desire. .. code-block:: python model = dm.MatchingModel() 3. Model training: Train neural network. .. code-block:: python model.run_train(train, validation, best_save_path='best_model.pth') 4. Application: Evaluate model on test set and apply to unlabeled data. .. code-block:: python model.run_eval(test) unlabeled = dm.data.process_unlabeled(path='data_directory/unlabeled.csv', trained_model=model) model.run_prediction(unlabeled) Installation ************** We currently support only Python versions 3.5+. Installing using pip is recommended: .. code-block:: pip install deepmatcher Tutorials ********** **Using DeepMatcher:** 1. `Getting Started`_: A more in-depth guide to help you get familiar with the basics of using DeepMatcher. 2. `Data Processing`_: Advanced guide on what data processing involves and how to customize it. 3. `Matching Models`_: Advanced guide on neural network architecture for entity matching and how to customize it. **Entity Matching Workflow:** `End to End Entity Matching`_: A guide to develop a complete entity matching workflow. The tutorial discusses how to use DeepMatcher with `Magellan`_ to perform blocking, sampling, labeling and matching to obtain matching tuple pairs from two tables. **DeepMatcher for other matching tasks:** `Question Answering with DeepMatcher`_: A tutorial on how to use DeepMatcher for question answering. Specifically, we will look at `WikiQA`_, a benchmark dataset for the task of Answer Selection. API Reference *************** API docs `are here`_. Support ********** Take a look at `the FAQ <FAQ.md>`__ for common issues. If you run into any issues or have questions not answered in the FAQ, please `file GitHub issues`_ and we will address them asap. The Team ********** DeepMatcher was developed by University of Wisconsin-Madison grad students Sidharth Mudgal and Han Li, under the supervision of Prof. AnHai Doan and Prof. Theodoros Rekatsinas. .. _`Deep Learning for Entity Matching`: http://pages.cs.wisc.edu/~anhai/papers1/deepmatcher-sigmod18.pdf .. _`Prof. AnHai Doan's data repository`: https://sites.google.com/site/anhaidgroup/useful-stuff/data .. _`Magellan`: https://sites.google.com/site/anhaidgroup/projects/magellan .. _`Getting Started`: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/getting_started.ipynb .. _`Data Processing`: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/data_processing.ipynb .. _`Matching Models`: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/matching_models.ipynb .. _`End to End Entity Matching`: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/end_to_end_em.ipynb .. _`are here`: https://anhaidgroup.github.io/deepmatcher/html/ .. _`Question Answering with DeepMatcher`: https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/question_answering.ipynb .. _`WikiQA`: https://aclweb.org/anthology/D15-1237 .. _`file GitHub issues`: https://github.com/anhaidgroup/deepmatcher/issues


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl deepmatcher-0.1.2.post2:

    pip install deepmatcher-0.1.2.post2.whl


نصب پکیج tar.gz deepmatcher-0.1.2.post2:

    pip install deepmatcher-0.1.2.post2.tar.gz