معرفی شرکت ها


deepint-1.4.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

deepint is a python package to work with Deep Intelligence in a more easy and intuitive way.
ویژگی مقدار
سیستم عامل -
نام فایل deepint-1.4.3
نام deepint
نسخه کتابخانه 1.4.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Deep Intelligence
ایمیل نویسنده devs@deepint.net
آدرس صفحه اصلی https://deepint.net/
آدرس اینترنتی https://pypi.org/project/deepint/
مجوز Copyright
# DeepIntelligence SDK for Python <p align="center"> <img src="https://deepint.net/sites/default/files/logo2.svg" align="center" width=300 height=300> </p> [![codecov](https://codecov.io/gh/deepintdev/deepint-python-sdk/branch/master/graph/badge.svg?token=QNAP7Y8CT1)](https://codecov.io/gh/deepintdev/deepint-python-sdk) [![Python Version](https://img.shields.io/pypi/pyversions/deepint.svg)](https://pypi.org/project/deepint/) [![PyPI Version](https://img.shields.io/pypi/v/deepint.svg)](https://pypi.org/project/deepint/) [![Package Status](https://img.shields.io/pypi/status/deepint.svg)](https://pypi.org/project/deepint/) [![Build Status](https://github.com/deepintdev/deepint-python-sdk/workflows/CI/badge.svg)](https://github.com/deepintdev/deepint-python-sdk/actions?query=workflow%3Aci) [![Documentation Status](https://readthedocs.org/projects/deepint-python-sdk/badge/?version=latest)](https://deepint-python-sdk.readthedocs.io) ##### DeepIntelligence SDK deepint is a python package to work with <a href="https://deepint.net/" target="_blank" >DeepIntelligence<a> in a more easy and intuitive way, allowing the programmer to develop in a fast way the data, analisys and visualization flows. The package consists in a wrapper arround <a href="https://app.deepint.net/api/v1/documentation/" target="_blank" >DeepIntelligence API<a>, with some extra facilities. ##### Deep Intelligence Deep Intelligence has been designed to help you select optimal AI & Machine Learning algorithms for the analysis of your business’ datasets. This platform can be customized to read any type of data from webs, files, databases, sensors…, it can also stream data in real time if needed, it’s all very simple! A highly attractive, user-friendly and intuitive visualization environment will guide you in the creation and configuration of algorithms that will analyze your data optimally. The platform makes it possible to create dashboards for better visualization experience, moreover, they can be easily integrated into any other online application. Improve your business decision-making without any expert IT knowledge! Deep Intelligence is a platform for Fintech, IoT, Smart Cities, Smart Grids, Biomedical analysis, Logistics, Industry 4.0, etc. Some of our customers have already increased their business’ profits by 50%! Our extensive team of data analysis experts will be at your complete disposal for any information, guidance and support you may need. Visit the DeepIntelligence on it's <a href="https://deepint.net/" target="_blank" >website<a>. ## Installation - **install**: `python3 -m pip install deepint` - **run tests**: install test dependencies with `python3 -m pip install deepint[tests]`, then define the enviroment variables `DEEPINT_TOKEN` and `DEEPINT_ORGANIZATION`. Finally, go to the tests foleder and run `pytest -vv test.py` - **generate doc**: install documentation dependencies with `python3 -m pip install -e deepint[docs]`, then go to the docs foleder and run `make html` ## Documentation Visit the documentation page at <a href="https://pypi.org/project/deepint/" target="_blanck">Pypi</a> or <a href="https://deepint-python-sdk.readthedocs.io/en/latest/index.html" target="_blanck">readthedocs</a> ## Setup credentials Credentials can be set up with one of the following methods (the token and instance is loaded in the priority defined in the order of the following items): - instance credentials object with the token and instance optional parameters `c = Credentials(token='a token', instance='app.deepint.net')` - create a environment variable called `DEEPINT_TOKEN` with the token value and another one called `DEEPINT_INSTANCE`. - create a .ini file in your home directory called `.deepint` coninting in the `DEFAULT` section the key `token` and the key `instance` like in following example ``` [DEFAULT] token=a token instance=host to connect with (if not providen app.deepint.net will be taken by default) ``` Note: If instance is not providen, the default value will be the SaaS instance `app.deepint.net`. To learn more about credentials setup, please visit the <a href="https://deepint-python-sdk.readthedocs.io/en/latest/_info/authentication.html" target="_blank" >official documentation<a>. ## Usage of main components ##### Load organization and access information and components ```python3 from deepint import Organization org = Organization.build(organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b") print(org.account) print(org.workspaces.fetch_all()) ws = org.workspaces.fetch_all()[0] print(ws.alerts.fetch_all()) print(ws.tasks.fetch_all()) print(ws.models.fetch_all()) print(ws.sources.fetch_all()) print(ws.dashboards.fetch_all()) print(ws.visualizations.fetch_all()) print(ws.info) print(ws.alerts.fetch_all()[0].info) print(ws.tasks.fetch_all()[0].info) print(ws.models.fetch_all()[0].info) print(ws.sources.fetch_all()[0].output_features) print(ws.sources.fetch_all()[0].input_features.fetch_all()) print(ws.sources.fetch_all()[0].info) print(ws.sources.fetch_all()[0].features.fetch_all()) print(ws.dashboards.fetch_all()[0].info) print(ws.visualizations.fetch_all()[0].info) # also all elements have to_dict method print(ws.info.to_dict()) ``` ##### Create workspace, source, alert and model ```python3 from deepint import Organization, AlertType, ModelType, ModelMethod org = Organization.build(organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b") workspace = org.workspaces.create(name='example', description='example') source = workspace.sources.create(name='example', description='example', features=[]) target_feature = source.features.fetch_all()[0] model = workspace.models.create(name='example', description='example', model_type=ModelType.regressor, method=ModelMethod.tree, source=source, target_feature_name=target_feature.name) alert = workspace.alerts.create(name='example', description='example', subscriptions=['example@example.ex'], color='#FF00FF', alert_type=AlertType.update, source_id=source.info.source_id) task = workspace.tasks.fetch_all(force_reload=True)[0] ``` ##### Load elements with builder ```python3 from deepint import Organization, Workspace, Model, Alert, Task, Alert, Source t_id = 'f88cd9ac-8bc7-49db-ab49-b53512b6adc9' a_id = 'ce92588d-700a-42d6-92f9-76863b648359' m_id = 'a1dec81d-b46d-44a0-8c7d-3d9db6b45449' ws_id = '03f695f2-8b6a-4b7d-9f66-e2479f8025a4' src_id = 'e7da542c-f38c-42bf-bc1d-e89eac179047' org_id = 'organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b' ws = Workspace.build(credentials=org.credentials, workspace_id=ws_id, organization_id=org_id) task = Task.build(task_id=a_id, workspace_id=ws_id, organization_id=org_id, credentials=org.credentials) model = Model.build(model_id=a_id, workspace_id=ws_id, organization_id=org_id, credentials=org.credentials) alert = Alert.build(alert_id=a_id, workspace_id=ws_id, organization_id=org_id, credentials=org.credentials) src = Source.build(source_id=src_id, workspace_id=ws_id, organization_id=org_id, credentials=org.credentials) ``` ##### Load elements with URL ```python3 from deepint import Organization, Workspace, Model, Alert, Task, Alert, Source t_id = 'f88cd9ac-8bc7-49db-ab49-b53512b6adc9' a_id = 'ce92588d-700a-42d6-92f9-76863b648359' m_id = 'a1dec81d-b46d-44a0-8c7d-3d9db6b45449' ws_id = '03f695f2-8b6a-4b7d-9f66-e2479f8025a4' src_id = 'e7da542c-f38c-42bf-bc1d-e89eac179047' org_id = 'organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b' ws = Workspace.from_url(url=f'https://app.deepint.net/o/{org_id}/workspace?ws={ws_id}', credentials=org.credentials) ws = Workspace.from_url(url=f'https://app.deepint.net/api/v1/workspace/{ws_id}', credentials=org.credentials, organization_id=org_id) t = Task.from_url(url=f'https://app.deepint.net/api/v1/workspace/{ws_id}/task/{t_id}', credentials=org.credentials, organization_id=org_id) t = Task.from_url(url=f'https://app.deepint.net/o/{org_id}/workspace?ws={ws_id}&s=task&i={t_id}', credentials=org.credentials) m = Model.from_url(url=f'https://app.deepint.net/o/{org_id}/workspace?ws={ws_id}&s=model&i={m_id}', credentials=org.credentials) m = Model.from_url(url=f'https://app.deepint.net/api/v1/workspace/{ws_id}/models/{m_id}', credentials=org.credentials, organization_id=org_id) a = Alert.from_url(url=f'https://app.deepint.net/o/{org_id}/workspace?ws={ws_id}&s=alert&i={a_id}', credentials=org.credentials) a = Alert.from_url(url=f'https://app.deepint.net/api/v1/workspace/{ws_id}/alerts/{a_id}', credentials=org.credentials, organization_id=org_id) src = Source.from_url(url=f'https://app.deepint.net/o/{org_id}/workspace?ws={ws_id}&s=source&i={src_id}', credentials=org.credentials) src = Source.from_url(url=f'https://app.deepint.net/api/v1/workspace/{ws_id}/source/{src_id}', credentials=org.credentials, organization_id=org_id) ``` ##### Create source from pandas.DataFrame ```python3 import pandas as pd from deepint import Organization, Source org = Organization.build(organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b") ws = org.workspaces.fetch(name='example') # create empty source empty_source = ws.sources.create(name='example', description='example', features=[]) # create source from dataframe (creates columns with the index, name nad type) data = pd.read_csv('example.csv') source = ws.sources.create_and_initialize(name='exampe', description='exampe', data=data) ``` ##### Use workspaces ```python3 from deepint import Organization, Credentials # load organization credentials = Credentials.build(token='3e6913ad-49f4-4fed-a50d-1ab703716a75') org = Organization.build(organization_id='dfdb7d08-18ce-4b5a-b082-0afa0f557d31', credentials=credentials) # create workspace ws = org.workspaces.create(name='example', description='example') # update workspace ws.update(name='example2', description='example2') # export workspace ZIP file zip_path = ws.export() # import workspace ZIP file new_workspace = org.workspaces.import_ws(new_workspace = org.workspaces.import(name='example2', description='example2', file_path=zip_path) # clone workspace other_workspace = ws.clone() # delayed export of workspace task = ws.export(folder_path='./example_ws.zip', wait_for_download=False) ws.export(folder_path='./example_ws_delayed.zip', task=task) # delete workspace ws.delete() ``` ##### Use sources ```python3 import pandas as pd from deepint import Organization org = Organization.build(organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b") ws = org.workspaces.fetch(workspace_id='example') # create source from dataframe (creates columns with the index, name nad type) data = pd.read_csv('example.csv') source = ws.sources.create_and_initialize(name='exampe', description='exampe', data=data) # update instances data2 = pd.read_csv('example.csv') task = source.instances.update(data=data2) # wait for task to finish task.resolve() # retrieve all instances retrieved_data = source.instances.fetch() # query for instances query = {...} # query of deepint.net retrieved_data = source.instances.fetch(where=query) # delete instances task = source.instances.delete(where=query) task.resolve() # udpate source name source.update(name='example2', description='example2') # update source features feature = source.features.fetch_all()[0] feature.feature_type = FeatureType.unknown source.features.update() # create source if not exists, else only retrieve source = ws.sources.create_if_not_exists('test') source1 = ws.sources.create_if_not_exists('test') if source == source1: print('source is equal to source1 because the method works!') source.delete() # create (with initialization) source if not exists, else only retrieve source = ws.sources.create_else_update(('test', data) source1 = ws.sources.create_else_update('test', data) if source == source1: print('source is equal to source1 because the method works!') source1.delete() # clone source new_source = source.clone() # delete source new_source.delete() # create derived source derived_source = ws.sources.create_derived(name='derived_test', description='desc', derived_type=DerivedSourceType.filter, origin_source_id=source.info.source_id, origin_source_b_id=None, query={}, features=source.features.fetch_all(), feature_a=None, feature_b=None, is_encrypted=False, is_shuffled=False, wait_for_creation=True) # create autoupdated and test configuration auto_updated_source = ws.sources.create_autoupdated( name='autoupdated', description='desc', source_type=SourceType.url_json, url='https://app.deepint.net/static/sources/iris.json', json_fields=["sepalLength", "sepalWidth", "petalLength", "petalWidth", "species"], json_prefix=None, http_headers=None, ignore_security_certificates=True, is_single_json_obj=False, wait_for_creation=True ) # fetch and update the autoupdate configuration auto_updated_source.update_actualization_config(auto_update=False) configuration = auto_updated_source.fetch_actualization_config() ``` ###### Use Real Time Sources ```python3 import pandas as pd from deepint import Organization org = Organization.build(organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b") ws = org.workspaces.fetch(workspace_id='example') # create real time source features = [SourceFeature.from_dict(f) for f in [ {"index": 0, "name": "sepalLength", "type": "numeric", "dateFormat": "", "indexed": True}, {"index": 1, "name": "sepalWidth", "type": "numeric", "dateFormat": "", "indexed": True}, {"index": 2, "name": "petalLength", "type": "numeric", "dateFormat": "", "indexed": True}, {"index": 3, "name": "petalWidth", "type": "numeric", "dateFormat": "", "indexed": True}, {"index": 4, "name": "species", "type": "nominal", "dateFormat": "", "indexed": True} ]] rt_source = ws.sources.create_real_time(name='test', description='desc', features=features) # update connection rt_source.update_connection(max_age=10, regenerate_password=True) # retrieve connection connection_info = rt_source.fetch_connection() # update instances data = [{ "sepalLength": 4.6, "sepalWidth": 3.2, "petalLength": 1.4, "petalWidth": 0.2, "species": "setosa" }] rt_source.instances.update(data=data) # retrieve instances instances = rt_source.instances.fetch() # clear queued instances during last 5 minutes to_time = datetime.now() from_time = datetime.now() - timedelta(minutes=5) rt_source.instances.clear_queued_instances(from_time=from_time, to_time=to_time) ``` ###### Use External sources ```python3 import pandas as pd from deepint import Organization org = Organization.build(organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b") ws = org.workspaces.fetch(workspace_id='example') # create source src_name = serve_name(TEST_SRC_NAME) features = [SourceFeature.from_dict(f) for f in [ {"index": 0, "name": "sepalLength", "type": "numeric", "dateFormat": "", "indexed": True}, {"index": 1, "name": "sepalWidth", "type": "numeric", "dateFormat": "", "indexed": True}, {"index": 2, "name": "petalLength", "type": "numeric", "dateFormat": "", "indexed": True}, {"index": 3, "name": "petalWidth", "type": "numeric", "dateFormat": "", "indexed": True}, {"index": 4, "name": "species", "type": "nominal", "dateFormat": "", "indexed": True} ]] external_source = ws.sources.create_external(name='test', description='desc', url='https://mysource:443/example?pub=03f695f2-8b6a-4b7d-9f66-e2479f8025a4&secret=3a874c05-26d1-4b8c-894d-caf90e40078b', features=features) # update instances data = [{ "sepalLength": 4.6, "sepalWidth": 3.2, "petalLength": 1.4, "petalWidth": 0.2, "species": "setosa" }] data = pd.DataFrame(data=data) external_source.instances.update(data=data) # connection update and retrieval external_source.update_connection(url='https://mynewurl:443/example?pub=03f695f2-8b6a-4b7d-9f66-e2479f8025a4&secret=3a874c05-26d1-4b8c-894d-caf90e40078b') connection_url = external_source.fetch_connection() ``` ##### Use models ```python3 import pandas as pd from deepint import Organization, Model, Task org = Organization.build(organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b") ws = org.workspaces.fetch(name='example') data = pd.read_csv('example.csv') source = ws.sources.create_and_initialize(name='example', description='example', data=data) # create model model = ws.models.create(name='example', description='example', model_type=ModelType.classifier, method=ModelMethod.gradient, source=source, target_feature_name='country') # update model model.update(name=f'other name', description=f'other description') # get model evaluation evaluation = model.predictions.evaluation() # predict one instance data_one_instance = data.head(n=1) del data_one_instance['country'] # delete target feature prediction_result = model.predictions.predict(data_one_instance) # predict batch data_some_instances = data.head(n=25) del data_some_instances['name'] # delete target feature prediction_result = model.predictions.predict_batch(data_some_instances) # predict with variaions variations = [i/100 for i in range(100)] prediction_result = model.predictions.predict_unidimensional(data_one_instance, variations, 'water_percentage') # delete model model.delete() ``` ##### Use tasks ```python3 import pandas as pd from deepint import Organization, Model, Task, TaskStatus from deepint DeepintTaskError org = Organization.build(organization_id="3a874c05-26d1-4b8c-894d-caf90e40078b") ws = org.workspaces.fetch(name='example') # retrieve tasks by status pending_tasks = ws.tasks.fetch_by_status(status=TaskStatus.pending) # cancel task t = pending_tasks[0] t.delete() # wait for task to finish t = pending_tasks[1] try: t.resolve() result = t.fetch_result() except DeepintTaskError as e: print(f'the task was errored with error {e}') # update and check if errored t = pending_tasks[2] t.load() if t.is_errored(): print('an errror occurred') ``` ##### Use visualizations ```python3 import pandas as pd from deepint import Organization, Visualization, Source # load organization and create workspace org = Organization.build(organization_id='a1faa528-1d42-4cf0-ae04-e122d0ddf9aa') ws = org.workspaces.create(name='example', description='example') # create a source for the visualization data = pd.read_csv('example.csv') src = ws.sources.create_and_initialize(name='exampe', description='exampe', data=data) # create visualization vis = ws.visualizations.create(name='example', description='example', privacy='public', source='source_id', configuration={}) # update visualization vis.update(name='example2', description='example2', source='source_id') # clone visualization new_vis = vis.clone() # extract token for iframe access url, token = vis.fetch_iframe_token() # delete visualization vis.delete() ``` ##### Use dashboards ```python3 from deepint import Credentials, Organization, Dashboard # load organization and create workspace org = Organization.build(organization_id='e612d27d-9c81-479f-a35f-85cac80c0718') ws = org.workspaces.create(name='example', description='example') # create dashboard dash = ws.dashboards.create(name='example', description='example', privacy='public', shareOpt="", gaId="", restricted=True, configuration={}) # update dashboard dash.update(name='example2', description='example2') # clone dashboard new_dash = dash.clone() # extract token for iframe access url, token = dash.fetch_iframe_token() # delete dashboard dash.delete() ``` ##### Use emails ```python3 from deepint import Organization # load organization and create workspace org = Organization.build(organization_id='e612d27d-9c81-479f-a35f-85cac80c0718') ws = org.workspaces.create(name='example', description='example') # create email new_email = workspace.emails.create(email='test@test.com') # fetch single test_email_info = workspace.emails.fetch(email='test@test.com') # fetch all emails emails = workspace.emails.fetch_all(force_reload=True) # delete email workspace.emails.delete(email=TEST_EMAIL) ``` #### Use custom endpoint ```python3 from deepint import Organization # load organization and create workspace org = Organization.build(organization_id='e612d27d-9c81-479f-a35f-85cac80c0718') ws = org.workspaces.create(name='example', description='example') # perform call to /api/v1/who response = org.endpoint.call(http_operation='GET', path='/api/v1/who', headers=None, parameters=None, is_paginated=False) ```


نیازمندی

مقدار نام
>=3.4.3 asyncio
>=5.0.1 configparser
>=1.18.3 numpy
>=1.1.4 pandas
>=2.8.1 python-dateutil
>=2.24.0 requests
>=1.25.9 urllib3
<3.1 jinja2
==1.22.0 numpy
==1.1.4 pandas
==0.6.0 recommonmark
==5.3.0 sphinx
==0.4.3 sphinx-rtd-theme
- codecov
- pytest
- pytest-cov


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl deepint-1.4.3:

    pip install deepint-1.4.3.whl


نصب پکیج tar.gz deepint-1.4.3:

    pip install deepint-1.4.3.tar.gz