معرفی شرکت ها


deepgrp-0.2.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DNA repeat annotations
ویژگی مقدار
سیستم عامل -
نام فایل deepgrp-0.2.3
نام deepgrp
نسخه کتابخانه 0.2.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Fabian Hausmann
ایمیل نویسنده fabian.hausmann@zmnh.uni-hamburg.de
آدرس صفحه اصلی https://github.com/fhausmann/deepgrp
آدرس اینترنتی https://pypi.org/project/deepgrp/
مجوز Apache-2.0
================================================================== DeepGRP - Deep learning for Genomic Repetitive element Prediction ================================================================== |PyPI version fury.io| .. |PyPI version fury.io| image:: https://badge.fury.io/py/deepgrp.svg :target: https://pypi.org/project/deepgrp/ DeepGRP is a python package used to predict genomic repetitive elements with a deep learning model consisting of bidirectional gated recurrent units with attention. The idea of DeepGRP was initially based on `dna-nn`__, but was re-implemented and extended using `TensorFlow`__ 2.1. DeepGRP was tested for the prediction of HSAT2,3, alphoid, Alu and LINE-1 elements. .. __: https://github.com/lh3/dna-nn .. __: https://www.tensorflow.org Getting Started =============== Installation ------------ For installation you can use the PyPI version with:: pip install deepgrp or install from this repository with:: git clone https://github.com/fhausmann/deepgrp cd deepgrp pip install . Additionally you can install the developmental version with `poetry`__:: git clone https://github.com/fhausmann/deepgrp cd deepgrp poetry install .. __: https://python-poetry.org/ Data preprocessing ------------------ For training and hyperparameter optimization the data have to be preprocessed. For inference / prediction the FASTA sequences can directly be used and you can skip this process. The provided script `parse_rm` can be used to extract repeat annotations from `RepeatMasker`__ annotations to a TAB seperated format by:: parse_rm GENOME.fa.out > GENOME.bed .. __: http://www.repeatmasker.org/ The FASTA sequences have to be converted to a one-hot-encoded representation, which can be done with:: preprocess_sequence FASTAFILE.fa.gz `preprocess_sequence` creates a one-hot-encoded representation in numpy compressed format in the same directory. Hyperparameter optimization --------------------------- For Hyperparameter optimization the github repository provides a jupyter `notebook`__ which can be used. .. __: https://github.com/fhausmann/deepgrp/blob/master/notebooks/DeepGRP.ipynb Hyperparameter optimization is based on the `hyperopt`__ package. .. __: https://github.com/hyperopt/hyperopt Training -------- Training of a model can be performed with:: deepgrp train <parameter.toml> <TRAIN>.fa.gz.npz <VALIDATION>.fa.gz.npz <annotations.bed> The prefix of `<TRAIN>` and `<VALIDATION>` should be as row identifier in the first column of `<annotations.bed>`. For more fine-grained control of the training process you can also use the provided jupyter `notebook`__. .. __: https://github.com/fhausmann/deepgrp/blob/master/notebooks/Training.ipynb Prediction ---------- The prediction can be done with the deepgrp main function like:: deepgrp <modelfile> <fastafile> [<fastafile>, ...] where `<modelfile>` contains the trained model in `HDF5`__ format and `<fastafile>` is a (multi-)FASTA file containing DNA sequences. Several FASTA files can be given at once. .. __: https://www.tensorflow.org/tutorials/keras/save_and_load Requirements ============ Requirements are listed in `pyproject.toml`__. .. __: https://github.com/fhausmann/deepgrp/blob/master/pyproject.toml Additionally for compiling C/Cython code, a C compiler should be installed. Contribution: ============= First of all any contributing are very welcome. If you want to contribute, please make a Pull request with your changes. Your code should be formatted using `yapf`__ using the default settings, they and they should pass all tests without issues. For testing currently `mypy`__ and `pylint`__ static tests are used, while `pytest`__ is used for functional tests. .. __: https://github.com/google/yapf .. __: https://mypy.readthedocs.io/en/latest/ .. __: https://pylint.pycqa.org/en/latest/ .. __: https://docs.pytest.org/en/6.2.x/ If you're adding new functionalities please provide corresponding tests in the `tests`__ directory. .. __: ./tests/ Feel free to ask in case of any questions. Further information =================== You can find material to reproduce the results in the repository `deepgrp_reproducibility`__. .. __: https://github.com/fhausmann/deepgrp_reproducibility


نیازمندی

مقدار نام
>=2.1.0,<2.6.0 tensorflow
>=1.0.1,<2.0.0 pandas
<1.20.0 numpy
>=0.2.3,<0.3.0 hyperopt
>=0.10.0,<0.11.0 toml


زبان مورد نیاز

مقدار نام
>=3.6.1,<3.9.0 Python


نحوه نصب


نصب پکیج whl deepgrp-0.2.3:

    pip install deepgrp-0.2.3.whl


نصب پکیج tar.gz deepgrp-0.2.3:

    pip install deepgrp-0.2.3.tar.gz