معرفی شرکت ها


deepctr-torch-0.2.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Easy-to-use,Modular and Extendible package of deep learning based CTR(Click Through Rate) prediction models with PyTorch
ویژگی مقدار
سیستم عامل -
نام فایل deepctr-torch-0.2.9
نام deepctr-torch
نسخه کتابخانه 0.2.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Weichen Shen
ایمیل نویسنده weichenswc@163.com
آدرس صفحه اصلی https://github.com/shenweichen/deepctr-torch
آدرس اینترنتی https://pypi.org/project/deepctr-torch/
مجوز Apache-2.0
# DeepCTR-Torch [![Python Versions](https://img.shields.io/pypi/pyversions/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch) [![Downloads](https://pepy.tech/badge/deepctr-torch)](https://pepy.tech/project/deepctr-torch) [![PyPI Version](https://img.shields.io/pypi/v/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch) [![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepctr-torch.svg )](https://github.com/shenweichen/deepctr-torch/issues) [![Documentation Status](https://readthedocs.org/projects/deepctr-torch/badge/?version=latest)](https://deepctr-torch.readthedocs.io/) ![CI status](https://github.com/shenweichen/deepctr-torch/workflows/CI/badge.svg) [![codecov](https://codecov.io/gh/shenweichen/DeepCTR-Torch/branch/master/graph/badge.svg?token=m6v89eYOjp)](https://codecov.io/gh/shenweichen/DeepCTR-Torch) [![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](./README.md#disscussiongroup) [![License](https://img.shields.io/github/license/shenweichen/deepctr-torch.svg)](https://github.com/shenweichen/deepctr-torch/blob/master/LICENSE) PyTorch version of [DeepCTR](https://github.com/shenweichen/DeepCTR). DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with `model.fit()`and `model.predict()` .Install through `pip install -U deepctr-torch`. Let's [**Get Started!**](https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955)) ## Models List | Model | Paper | | :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) | | Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) | | Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) | | Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) | | DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) | | Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) | | Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) | | Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) | | Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) | | xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) | | Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) | | Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) | | AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) | | ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) | | FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) | | IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) | | DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) | | DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) | | AFN | [AAAI 2020][Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://arxiv.org/pdf/1909.03276) | | SharedBottom | [arxiv 2017][An Overview of Multi-Task Learning in Deep Neural Networks](https://arxiv.org/pdf/1706.05098.pdf) | | ESMM | [SIGIR 2018][Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://dl.acm.org/doi/10.1145/3209978.3210104) | | MMOE | [KDD 2018][Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts](https://dl.acm.org/doi/abs/10.1145/3219819.3220007) | | PLE | [RecSys 2020][Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations](https://dl.acm.org/doi/10.1145/3383313.3412236) | ## DisscussionGroup & Related Projects - [Github Discussions](https://github.com/shenweichen/DeepCTR/discussions) - Wechat Discussions |公众号:浅梦学习笔记|微信:deepctrbot|学习小组 [加入](https://t.zsxq.com/026UJEuzv) [主题集合](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MjM5MzY4NzE3MA==&action=getalbum&album_id=1361647041096843265&scene=126#wechat_redirect)| |:--:|:--:|:--:| | [![公众号](./docs/pics/code.png)](https://github.com/shenweichen/AlgoNotes)| [![微信](./docs/pics/deepctrbot.png)](https://github.com/shenweichen/AlgoNotes)|[![学习小组](./docs/pics/planet_github.png)](https://t.zsxq.com/026UJEuzv)| - Related Projects - [AlgoNotes](https://github.com/shenweichen/AlgoNotes) - [DeepCTR](https://github.com/shenweichen/DeepCTR) - [DeepMatch](https://github.com/shenweichen/DeepMatch) - [GraphEmbedding](https://github.com/shenweichen/GraphEmbedding) ## Main Contributors([welcome to join us!](./CONTRIBUTING.md)) <table border="0"> <tbody> <tr align="center" > <td> ​ <a href="https://github.com/shenweichen"><img width="70" height="70" src="https://github.com/shenweichen.png?s=40" alt="pic"></a><br> ​ <a href="https://github.com/shenweichen">Shen Weichen</a> ​ <p> Alibaba Group </p>​ </td> <td> ​ <a href="https://github.com/zanshuxun"><img width="70" height="70" src="https://github.com/zanshuxun.png?s=40" alt="pic"></a><br> ​ <a href="https://github.com/zanshuxun">Zan Shuxun</a> <p> Alibaba Group </p>​ </td> <td> <a href="https://github.com/weberrr"><img width="70" height="70" src="https://github.com/weberrr.png?s=40" alt="pic"></a><br> <a href="https://github.com/weberrr">Wang Ze</a> ​ <p> Meituan </p>​ </td> <td> ​ <a href="https://github.com/wutongzhang"><img width="70" height="70" src="https://github.com/wutongzhang.png?s=40" alt="pic"></a><br> <a href="https://github.com/wutongzhang">Zhang Wutong</a> <p> Tencent </p>​ </td> <td> ​ <a href="https://github.com/ZhangYuef"><img width="70" height="70" src="https://github.com/ZhangYuef.png?s=40" alt="pic"></a><br> ​ <a href="https://github.com/ZhangYuef">Zhang Yuefeng</a> <p> Peking University </p>​ </td> </tr> <tr align="center"> <td> ​ <a href="https://github.com/JyiHUO"><img width="70" height="70" src="https://github.com/JyiHUO.png?s=40" alt="pic"></a><br> ​ <a href="https://github.com/JyiHUO">Huo Junyi</a> <p> University of Southampton <br> <br> </p>​ </td> <td> ​ <a href="https://github.com/Zengai"><img width="70" height="70" src="https://github.com/Zengai.png?s=40" alt="pic"></a><br> ​ <a href="https://github.com/Zengai">Zeng Kai</a> ​ <p> SenseTime <br> <br> </p>​ </td> <td> ​ <a href="https://github.com/chenkkkk"><img width="70" height="70" src="https://github.com/chenkkkk.png?s=40" alt="pic"></a><br> ​ <a href="https://github.com/chenkkkk">Chen K</a> ​ <p> NetEase <br> <br> </p>​ </td> <td> ​ <a href="https://github.com/WeiyuCheng"><img width="70" height="70" src="https://github.com/WeiyuCheng.png?s=40" alt="pic"></a><br> ​ <a href="https://github.com/WeiyuCheng">Cheng Weiyu</a> ​ <p> Shanghai Jiao Tong University</p>​ </td> <td> ​ <a href="https://github.com/tangaqi"><img width="70" height="70" src="https://github.com/tangaqi.png?s=40" alt="pic"></a><br> ​ <a href="https://github.com/tangaqi">Tang</a> <p> Tongji University <br> <br> </p>​ </td> </tr> </tbody> </table>


نیازمندی

مقدار نام
>=1.2.0 torch
- tqdm
- scikit-learn
- tensorflow


زبان مورد نیاز

مقدار نام
>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.* Python


نحوه نصب


نصب پکیج whl deepctr-torch-0.2.9:

    pip install deepctr-torch-0.2.9.whl


نصب پکیج tar.gz deepctr-torch-0.2.9:

    pip install deepctr-torch-0.2.9.tar.gz