معرفی شرکت ها


deepbgc-0.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DeepBGC - Biosynthetic Gene Cluster detection and classification
ویژگی مقدار
سیستم عامل -
نام فایل deepbgc-0.1.9
نام deepbgc
نسخه کتابخانه 0.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده David Příhoda, Geoffrey Hannigan
ایمیل نویسنده david.prihoda1@merck.com
آدرس صفحه اصلی https://github.com/Merck/DeepBGC
آدرس اینترنتی https://pypi.org/project/deepbgc/
مجوز MIT
# DeepBGC: Biosynthetic Gene Cluster detection and classification DeepBGC detects BGCs in bacterial and fungal genomes using deep learning. DeepBGC employs a Bidirectional Long Short-Term Memory Recurrent Neural Network and a word2vec-like vector embedding of Pfam protein domains. Product class and activity of detected BGCs is predicted using a Random Forest classifier. [![BioConda Install](https://img.shields.io/conda/dn/bioconda/deepbgc.svg?style=flag&label=BioConda%20install&color=green)](https://anaconda.org/bioconda/deepbgc) ![PyPI - Downloads](https://img.shields.io/pypi/dm/deepbgc.svg?color=green&label=PyPI%20downloads) [![PyPI license](https://img.shields.io/pypi/l/deepbgc.svg)](https://pypi.python.org/pypi/deepbgc/) [![PyPI version](https://badge.fury.io/py/deepbgc.svg)](https://badge.fury.io/py/deepbgc) [![CI](https://api.travis-ci.org/Merck/deepbgc.svg?branch=master)](https://travis-ci.org/Merck/deepbgc) ![DeepBGC architecture](images/deepbgc.architecture.png?raw=true "DeepBGC architecture") ## 📌 News 📌 - **DeepBGC 0.1.23**: Predicted BGCs can now be uploaded for visualization in **antiSMASH** using a JSON output file - Install and run DeepBGC as usual based on instructions below - Upload `antismash.json` from the DeepBGC output folder using "Upload extra annotations" on the [antiSMASH](https://antismash.secondarymetabolites.org/) page - Predicted BGC regions and their prediction scores will be displayed alongside antiSMASH BGCs ## Publications A deep learning genome-mining strategy for biosynthetic gene cluster prediction <br> Geoffrey D Hannigan, David Prihoda et al., Nucleic Acids Research, gkz654, https://doi.org/10.1093/nar/gkz654 ## Install using conda (recommended) You can install DeepBGC using [Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/download.html) or one of the alternatives ([Miniconda](https://docs.conda.io/en/latest/miniconda.html), [Miniforge](https://github.com/conda-forge/miniforge)). Set up Bioconda and Conda-Forge channels: ```bash conda config --add channels bioconda conda config --add channels conda-forge ``` Install DeepBGC using: ```bash # Create a separate DeepBGC environment and install dependencies conda create -n deepbgc python=3.7 hmmer prodigal # Install DeepBGC into the environment using pip conda activate deepbgc pip install deepbgc # Alternatively, install everything using conda (currently unstable due to conda conflicts) conda install deepbgc ``` ## Install dependencies manually (if conda is not available) If you don't mind installing the HMMER and Prodigal dependencies manually, you can also install DeepBGC using pip: - Install Python version 3.6 or 3.7 (Note: **Python 3.8 is not supported** due to Tensorflow < 2.0 dependency) - Install Prodigal and put the `prodigal` binary it on your PATH: https://github.com/hyattpd/Prodigal/releases - Install HMMER and put the `hmmscan` and `hmmpress` binaries on your PATH: http://hmmer.org/download.html - Run `pip install deepbgc` to install DeepBGC ## Use DeepBGC ### Download models and Pfam database Before you can use DeepBGC, download trained models and Pfam database: ```bash deepbgc download ``` You can display downloaded dependencies and models using: ```bash deepbgc info ``` ### Detection and classification ![DeepBGC pipeline](images/deepbgc.pipeline.png?raw=true "DeepBGC pipeline") Detect and classify BGCs in a genomic sequence. Proteins and Pfam domains are detected automatically if not already annotated (HMMER and Prodigal needed) ```bash # Show command help docs deepbgc pipeline --help # Detect and classify BGCs in mySequence.fa using DeepBGC detector. deepbgc pipeline mySequence.fa # Detect and classify BGCs in mySequence.fa using custom DeepBGC detector trained on your own data. deepbgc pipeline --detector path/to/myDetector.pkl mySequence.fa ``` This will produce a `mySequence` directory with multiple files and a README.txt with file descriptions. See [Train DeepBGC on your own data](#train-deepbgc-on-your-own-data) section below for more information about training a custom detector or classifier. #### Example output See the [DeepBGC Example Result Notebook](https://nbviewer.jupyter.org/urls/github.com/Merck/deepbgc/releases/download/v0.1.0/DeepBGC_Example_Result.ipynb). Data can be downloaded on the [releases page](https://github.com/Merck/deepbgc/releases) ![Detected BGC Regions](images/deepbgc.bgc.png?raw=true "Detected BGC regions") ## Train DeepBGC on your own data You can train your own BGC detection and classification models, see `deepbgc train --help` for documentation and examples. Training and validation data can be found in [release 0.1.0](https://github.com/Merck/deepbgc/releases/tag/v0.1.0) and [release 0.1.5](https://github.com/Merck/deepbgc/releases/tag/v0.1.5). You will need: - Positive (BGC) training data - In most cases, this is your own BGC training set, see "Preparing training data" section below - Negative (Non-BGC) training data - Needed for BGC detection. You can use `GeneSwap_Negatives.pfam.tsv` from release https://github.com/Merck/deepbgc/releases/tag/v0.1.0 - Validation data - Needed for BGC detection. Contigs with annotated BGC and non-BGC regions. A working example can be downloaded from https://github.com/Merck/deepbgc/releases/tag/v0.1.5 - Trained Pfam2vec vectors - "Vocabulary" converting Pfam IDs to meaningful numeric vectors, you can reuse previously trained `pfam2vec.csv` results from https://github.com/Merck/deepbgc/releases/tag/v0.1.0 - JSON configuration files - See JSON section below If you have any questions about using or training DeepBGC, feel free to submit an issue. ### Preparing training data The training examples need to be prepared in Pfam TSV format, which can be prepared from your sequence using `deepbgc prepare`. First, you will need to manually add an `in_cluster` column that will contain 0 for pfams outside a BGC and 1 for pfams inside a BGC. We recommend preparing a separate negative TSV and positive TSV file, where the column will be equal to all 0 or 1 respectively. Finally, you will need to manually add a `sequence_id` column , which will identify a continuous sequence of Pfams from a single sample (BGC or negative sequence). The samples are shuffled during training to present the model with a random order of positive and negative samples. Pfams with the same `sequence_id` value will be kept together. For example, if your training set contains multiple BGCs, the `sequence_id` column should contain the BGC ID. **! New in version 0.1.17 !** You can now prepare *protein* FASTA sequences into a Pfam TSV file using `deepbgc prepare --protein`. ### JSON model training template files DeepBGC is using JSON template files to define model architecture and training parameters. All templates can be downloaded in [release 0.1.0](https://github.com/Merck/deepbgc/releases/tag/v0.1.0). JSON template for DeepBGC LSTM **detector** with pfam2vec is structured as follows: ``` { "type": "KerasRNN", - Model architecture (KerasRNN/DiscreteHMM/GeneBorderHMM) "build_params": { - Parameters for model architecture "batch_size": 16, - Number of splits of training data that is trained in parallel "hidden_size": 128, - Size of vector storing the LSTM inner state "stateful": true - Remember previous sequence when training next batch }, "fit_params": { "timesteps": 256, - Number of pfam2vec vectors trained in one batch "validation_size": 0, - Fraction of training data to use for validation (if validation data is not provided explicitly). Use 0.2 for 20% data used for testing. "verbose": 1, - Verbosity during training "num_epochs": 1000, - Number of passes over your training set during training. You probably want to use a lower number if not using early stopping on validation data. "early_stopping" : { - Stop model training when at certain validation performance "monitor": "val_auc_roc", - Use validation AUC ROC to observe performance "min_delta": 0.0001, - Stop training when the improvement in the last epochs did not improve more than 0.0001 "patience": 20, - How many of the last epochs to check for improvement "mode": "max" - Stop training when given metric stops increasing (use "min" for decreasing metrics like loss) }, "shuffle": true, - Shuffle samples in each epoch. Will use "sequence_id" field to group pfam vectors belonging to the same sample and shuffle them together "optimizer": "adam", - Optimizer algorithm "learning_rate": 0.0001, - Learning rate "weighted": true - Increase weight of less-represented class. Will give more weight to BGC training samples if the non-BGC set is larger. }, "input_params": { "features": [ - Array of features to use in model, see deepbgc/features.py { "type": "ProteinBorderTransformer" - Add two binary flags for pfam domains found at beginning or at end of protein }, { "type": "Pfam2VecTransformer", - Convert pfam_id field to pfam2vec vector using provided pfam2vec table "vector_path": "#{PFAM2VEC}" - PFAM2VEC variable is filled in using command line argument --config } ] } } ``` JSON template for Random Forest **classifier** is structured as follows: ``` { "type": "RandomForestClassifier", - Type of classifier (RandomForestClassifier) "build_params": { "n_estimators": 100, - Number of trees in random forest "random_state": 0 - Random seed used to get same result each time }, "input_params": { "sequence_as_vector": true, - Convert each sample into a single vector "features": [ { "type": "OneHotEncodingTransformer" - Convert each sequence of Pfams into a single binary vector (Pfam set) } ] } } ``` ### Using your trained model Since version `0.1.10` you can provide a direct path to the detector or classifier model like so: ```bash deepbgc pipeline \ mySequence.fa \ --detector path/to/myDetector.pkl \ --classifier path/to/myClassifier.pkl ```


نیازمندی

مقدار نام
- argparse
>=1.78 biopython
==0.21.3 scikit-learn
==0.24.1 pandas
==1.16.1 numpy
==2.2.4 keras
==1.15.4 tensorflow
==2.2.3 matplotlib
>=1.4.3 appdirs
==1.2.0 scipy
<0.2.7,>=0.2.1 hmmlearn


زبان مورد نیاز

مقدار نام
>=3.6,<3.8 Python


نحوه نصب


نصب پکیج whl deepbgc-0.1.9:

    pip install deepbgc-0.1.9.whl


نصب پکیج tar.gz deepbgc-0.1.9:

    pip install deepbgc-0.1.9.tar.gz