معرفی شرکت ها


deepair-encoder-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This is a sub modular package for encoding
ویژگی مقدار
سیستم عامل -
نام فایل deepair-encoder-0.0.9
نام deepair-encoder
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده DeepAir Dev
ایمیل نویسنده naman@deepair.io
آدرس صفحه اصلی https://bitbucket.org/deepair/
آدرس اینترنتی https://pypi.org/project/deepair-encoder/
مجوز -
## Deep Air Encoder This package is used for encoding data fields for machine compliant dataframes. ## Package structure `deepair_encoder` ├── encoder.py ├── __init__.py └── utils ├── encoder_tools.py ├── __init__.py ├── logger.py └── splitters.py 1 directory, 6 files ## Dependencies **Note**: The following python3 packages are necessary for this package to run: * numpy * scipy * pandas * sklearn * tabulate * tqdm ## Function Declarations Here are the signatures for the functions in the package that can be used for deepair-dev. ### encoder.py Below are the functions that can be accessed by importing this module as `from deepair_encoder.encoder import <function_name>`. `encode_username`: ``` def encode_username(df, drop_field=True): ''' Username one-hot encoder. inputs: df: Dataframe which have username column (pandas df series) drop_field: a flag if the usename column should be dropped or not after encoding (bool) return: df: Dataframe which have only username indicator [0/1] (pandas df series) ''' ``` `encode_discounts`: ``` def encode_discounts(df, drop_field=True): ''' Discounts encoder. inputs: df: dataframe which has discounts column (pandas df series) drop_field: a flag if the discounts column should be dropped or not after encoding (bool) return: df: a dataframe with 3 new columns 'PROMOCODE', 'RES', 'LFG' and discounts droped if drop_field = True ''' ``` `minmax_score`: ``` def minmax_score(df, fields, keyval=['requestid', 'direction_onward'], drop_field=True, verbose=True): ''' scorer function to normalize from 0-1 inversely to the value. inputs: df: Dataframe which contains fields (pandas df series) fields: Dataframe columns on which the score is calculated (list) keyval: Group the data by this key values (list) drop_field: Indicator to replace fields by new scored fields (bool) verbose: Progress bar indicator (bool) return: field: Dataframe with a score for totalprice relative to whole requestid-direction, by index, by faregroup (pandas df series) ''' ``` `minmax_normalize`: ``` def minmax_normalize(df, fields, keyval=['requestid', 'direction_onward'], drop_field=True, verbose=True): ''' normalizer function to normalize from 0-1 proportional to the value. inputs: df: Dataframe which contains fields (pandas df series) fields: Dataframe columns on which the normalication is calculated (list) keyval: Group the data by this key values (list) drop_field: Indicator to replace fields by normalized new fields (bool) verbose: Progress bar indicator (bool) return: field: Dataframe with a score for totalprice relative to whole requestid-direction, by index, by faregroup (pandas df series) ''' ``` `encode_totalprice`: ``` def encode_totalprice(df): ''' total price encoder. inputs: df: Dataframe which have totalprice and totaltaxes column (pandas df series) return: df: Dataframe with a score for totalprice relative to whole requestid-direction, by index, by faregroup (pandas df series) ''' ``` `encode_bookingid`: ``` def encode_bookingid(df): ''' Bookingid flag one-hot encoder. inputs: df: Dataframe which have Bookingid column (pandas df series) return: df: Dataframe which have only Bookingid indicator [0/1] (pandas df series) ''' ``` `encode_faregroup`: ``` def encode_faregroup(raw_file, df, verbose=False): ''' Faregroup encoder. inputs: raw_file: raw_file location where the faregroup_definition is available df: Dataframe which have faregroup column (pandas df series) verbose: Optional, if more detailed log is needed return: field: Dataframe with extra fields with faregroup attributes [-1/0/1] (pandas df series) Note: -1 = not available, 0 = available for a fee, 1 = available for free (at no charge) ''' ``` `encode_datetime`: ``` def encode_datetime(df, field, verbose=False): ''' Datetime encoder. inputs: df: Dataframe which have 'field' column (pandas df series) field: the field that has to be encoded return: df: Dataframe with 6 ecoded values capturing TOD, DOW and WOY ''' ``` `encode_advanced_purchase`: ``` def encode_advanced_purchase(df, dptr_field='departuredate', sales_field='utctimestamp'): ''' advanced purchase encoder. inputs: df: Dataframe which have dptr_field and sales_field column (pandas df series) return: df: Dataframe advanced purchase column ''' ``` `encode_los`: ``` def encode_los(df, verbose=False): ''' los and trip_type encoder. inputs: df: Dataframe which have departuredate, requestid and direction column (pandas df series) return: df: Dataframe los and trip_type encodes column ''' ``` `encode_airports`: ``` def encode_airports(df, fields, reference_file_path, verbose=True): ''' encode the airports. inputs: df : Dataframe which have airports (pandas df series) fields : list of fields that you want to run this function on (list) reference_file_path : path to the codes file (string) verbose : Indicator for progress bar (bool) return: df: Dataframe encoded with airports values ''' ``` `encode_city`: ``` def encode_city(df, fields, reference_file_path, verbose=True): ''' encode the airports. inputs: df : Dataframe which have city (pandas df series) fields : list of fields that you want to run this function on (list) reference_file_path : path to the codes file (string) verbose : Indicator for progress bar (bool) return: df: Dataframe encoded with airports values ''' ``` ### utils This subpackage contains tools a level lower than `encoder` module i.e. those modules that are used by encoder. #### encoder_tools Below are the functions that can be accessed by importing this module as `from deepair_encoder.utils.encoder_tools import <function_name>`. `one_hot_encoder`: ``` def one_hot_encoder(df, fields, fields_drop=True, verbose=True, classes=None): ''' Converts the fields into one hot encoding. inputs: df: Dataframe containing all those fields (pandas df) fields: Dataframe columns that you want to convert to one hot (string) verbose: Indicator for progress bar (bool) classes: Dictionary for the desired columns (dict) return: df: updated dataframe (pandas df) ''' ``` `integer_encoder`: ``` def integer_encoder(df, fields, verbose=True): ''' Converts the fields into integer encoding. inputs: df: Dataframe containing all those fields (pandas df) fields: Dataframe columns that you want to convert to one hot (string) verbose: Indicator for progress bar (bool) returns: df: updated dataframe (pandas df) ''' ``` `get_wom`: ``` def get_wom(field): ''' Function for week of the month. inputs: field: Dataframe column which have timestamp (pandas df series) return: field: Dataframe column which have wom (pandas df series) ''' ``` `get_dow`: ``` def get_dow(field): ''' Function for day of the week. inputs: field: Dataframe column which have timestamp (pandas df series) return: field: Dataframe column which have dow (pandas df series) ''' ``` `get_month`: ``` def get_month(field): ''' Function for month. inputs: field: Dataframe column which have timestamp (pandas df series) return: field: Dataframe column which have only month (pandas df series) ''' ``` `get_year`: ``` def get_year(field): ''' Function for year. inputs: field: Dataframe column which have timestamp (pandas df series) return: field: Dataframe column which have only year (pandas df series) ''' ``` `obj2num`: ``` def obj2num(df, fields, verbose=True): ''' Converts the fields into numeric from obj data type. inputs: df: Dataframe containing all those fields (pandas df) fields: Dataframe columns that you want to convert to numeric (string) verbose: Indicator for progress bar (bool) returns: df: updated dataframe (pandas df) ''' ``` #### logger Below are the functions that can be accessed by importing this module as `from deepair_encoder.utils.logger import <function_name>`. `unique_stats`: ``` def unique_stats(df): ``` `_log_with_timestamp`: ``` def _log_with_timestamp(message): ''' prints message on console input : message : msg to print (string) ''' ``` #### splitters Below are the functions that can be accessed by importing this module as `from deepair_encoder.utils.splitters import <function_name>`. `type_splitter`: ``` def type_splitter(data, keys=['passengertypes'], newheadings=[['ADT', 'CHD', 'INF']]): ''' Split the column (need to make it more generic). inputs: data: dataframe which contain this column (pd dataframe) keys: list of column fields to split(list) newheadings: list of list for header columns in keys (list) returns: data: updated dataframe (pandas df) ''' ``` `split_datewise`: ``` def split_datewise(df, directory='', postfix='', mode='w'): ''' Split a Dataframe according to dates in UTC-Timestamp: input :- DF : dataframe which contain this column (pd dataframe) directory : path to the target directory (string) postfix : any postfix you want to add (string) mode : writing mode ('w':writing, 'a': append) ''' ```


نحوه نصب


نصب پکیج whl deepair-encoder-0.0.9:

    pip install deepair-encoder-0.0.9.whl


نصب پکیج tar.gz deepair-encoder-0.0.9:

    pip install deepair-encoder-0.0.9.tar.gz