معرفی شرکت ها


deepair-dev-utils-0.0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This is a sub modular package for developer utilities
ویژگی مقدار
سیستم عامل -
نام فایل deepair-dev-utils-0.0.7
نام deepair-dev-utils
نسخه کتابخانه 0.0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده DeepAir Dev
ایمیل نویسنده naman@deepair.io
آدرس صفحه اصلی https://bitbucket.org/deepair/
آدرس اینترنتی https://pypi.org/project/deepair-dev-utils/
مجوز -
## Deep Developer Utilities This package consists of developer utilities specifically used for data operations and handeling within deep air environment. ## Package structure `deepair_dev_utils` . ├── general │   ├── __init__.py │   └── tools.py ├── __init__.py └── loader ├── __init__.py └── tools.py 2 directories, 5 files ## Dependencies **Note**: The following python3 packages are necessary for this package to run: * numpy * scipy * pandas * sklearn * tqdm ## Function Declarations Here are the signatures for the functions in the package that can be used for deepair-dev. ### general.py Below are the functions that can be accessed by importing this module as `from deepair_dev_utils.general.tools import <function_name>`. `log`: ``` def log(message): ''' prints message on console input : message : msg to print (string) ''' ``` `get_data`: ``` def get_data(path): ''' Single file loader function input : path : abs path to load from (string) ''' ``` `daterange`: ``` def daterange(s_date, e_date): ''' To return a list of all the dates from start date to end date (excluding end date) input : s_date : start date (datetime) e_date : end date (datetime) returns : list of dates ''' ``` `jsonReader`: ``` def jsonReader(path): ''' JSON File Reader (from absolute path). Args: path : absolute path of json file (string) Return: data : loaded JSON ''' ``` `jsonWriter`: ``` def jsonWriter(data, path): ''' JSON File Writer (to absolute path). Args: data : data to write (JSON/DICT/STRING) path : absolute path of json file (string) ''' ``` `ddmmyyyy2datetime`: ``` def ddmmyyyy2datetime(start_date): ''' Convert dd-mm-yyyy to std data time format. Args: start_date : date with dd-mm-yyyy (string) Return: date : converted format ''' ``` Below are the decorators that can be accessed by importing this module as `from deepair_dev_utils.general.decorators import <decorator_name>`. `function_logger`: ``` def function_logger(orig_func): ''' Create a file with function.log (if possible) otherwise with unknown_function.log and record the arguments passed for the function example: @function_logger def target_function(...): ... ''' ``` `function_timer`: ``` def function_timer(orig_func): ''' Displays runtime on console example: @function_timer def target_function(...): ... ''' ``` ### Loader This subpackage contains tools for loading data as `Handler`. #### Handler Below are the functions that can be accessed by importing this module as `from deepair_dev_utils.loader.tools import Handler`. Then create an object to access the fuctions. example `obj = Handler()` and then `obj.<function_name>` `__init__`: ``` def __init__(self, verbose=True): ''' Handlder (class) constructor. inputs: verbose: Indicator for log and progress bar (bool) ''' ``` `loader`: ``` def loader(self, dir_path, start_date, end_date, prefix='', postfix='', ext='.csv'): ''' Primary loader function to load the data from start date to end date in concatinated (single dataframe) format. inputs: dir_path : absolute path to the directory path (series) start_date : load start date in dd-mm-yyyy format (string) end_date : load end date in dd-mm-yyyy format (string) prefix : file prefix [if necessary] (string) postfix : file postfix [if necessary] (string) ext : file extension [default is .csv] (string) return: df: loaded concatenated dataframe (pandas df) ''' ``` `loader_v2`: ``` def loader_v2(self, dir_path, start_date, end_date, prefix='', postfix='', ext='.csv'): ''' (VERSION 2) Primary loader function to load the data from start date to end date in concatinated (single dataframe) format. inputs: dir_path : absolute path to the directory path (series) start_date : load start date in yyyy-mm-dd format (string) end_date : load end date in yyyy-mm-dd format (string) prefix : file prefix [if necessary] (string) postfix : file postfix [if necessary] (string) ext : file extension [default is .csv] (string) return: df: loaded concatenated dataframe (pandas df) ''' ``` `single_loader`: ``` def single_loader(self, dir_path, start_date, end_date, prefix='', postfix='', ext='.csv'): ''' Single loader function to load the data from start date to end date in individual datewise (each dataframe is of one date) format. inputs: dir_path : absolute path to the directory path (series) start_date : load start date in dd-mm-yyyy format (string) end_date : load end date in dd-mm-yyyy format (string) prefix : file prefix [if necessary] (string) postfix : file postfix [if necessary] (string) ext : file extension [default is .csv] (string) return: data: list of data frames datewise (list) ''' ``` `batch_loader`: ``` def batch_loader(self, dir_path, start_date, end_date, batch_size=1, prefix='', postfix='', ext='.csv'): ''' Batch loader function to load the data from start date to end date in batches (each dataframe is in the form of batch datewise) format. inputs: dir_path : absolute path to the directory path (series) start_date : load start date in dd-mm-yyyy format (string) end_date : load end date in dd-mm-yyyy format (string) batch_size : batch size (int) prefix : file prefix [if necessary] (string) postfix : file postfix [if necessary] (string) ext : file extension [default is .csv] (string) return: data: list of data frames datewise (list) ''' ``` `_load_action`: ``` def _load_action(self, df): ''' @abstractmethod User defined Bottle neck pipeline within load. NOTE -> Default job of this function is pass i.e. do nothing inputs: df: Dataframe to apply this method on (pandas df) return: df: Modified dataframe (pandas df) ''' ```


نحوه نصب


نصب پکیج whl deepair-dev-utils-0.0.7:

    pip install deepair-dev-utils-0.0.7.whl


نصب پکیج tar.gz deepair-dev-utils-0.0.7:

    pip install deepair-dev-utils-0.0.7.tar.gz