معرفی شرکت ها


deepacvir-0.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Detecting novel human viruses from DNA reads with reverse-complement neural networks.
ویژگی مقدار
سیستم عامل -
نام فایل deepacvir-0.2.2
نام deepacvir
نسخه کتابخانه 0.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jakub Bartoszewicz
ایمیل نویسنده jakub.bartoszewicz@hpi.de
آدرس صفحه اصلی https://gitlab.com/rki_bioinformatics/DeePaC
آدرس اینترنتی https://pypi.org/project/deepacvir/
مجوز MIT
<!-- {#mainpage} --> # DeePaC-vir DeePaC-vir is a plugin for DeePaC (see below) shipping built-in models for novel human virus detection directly from NGS reads. For details, see our preprint on bioRxiv: <https://www.biorxiv.org/content/10.1101/2020.01.29.925354v5> # DeePaC DeePaC is a python package and a CLI tool for predicting labels (e.g. pathogenic potentials) from short DNA sequences (e.g. Illumina reads) with interpretable reverse-complement neural networks. For details, see our preprint on bioRxiv: <https://www.biorxiv.org/content/10.1101/535286v3> and the paper in *Bioinformatics*: <https://doi.org/10.1093/bioinformatics/btz541>. For details regarding the interpretability functionalities of DeePaC, see the preprint here: <https://www.biorxiv.org/content/10.1101/2020.01.29.925354v2> Documentation can be found here: <https://rki_bioinformatics.gitlab.io/DeePaC/>. See also the main repo here: <https://gitlab.com/rki_bioinformatics/DeePaC>. ## Installation ### With Bioconda (recommended) [![install with bioconda](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io/recipes/deepac/README.html) You can install DeePaC with `bioconda`. Set up the [bioconda channel]( <https://bioconda.github.io/user/install.html#set-up-channels>) first (channel ordering is important): ``` conda config --add channels defaults conda config --add channels bioconda conda config --add channels conda-forge ``` We recommend setting up an isolated `conda` environment: ``` # python 3.6, 3.7 and 3.8 are supported conda create -n my_env python=3.8 conda activate my_env ``` and then: ``` # For GPU support (recommended) conda install tensorflow-gpu deepacvir # Basic installation (CPU-only) conda install deepacvir ``` ### With pip We recommend setting up an isolated `conda` environment (see above). Alternatively, you can use a `virtualenv` virtual environment (note that deepac requires python 3): ``` # use -p to use the desired python interpreter (python 3.6 or higher required) virtualenv -p /usr/bin/python3 my_env source my_env/bin/activate ``` You can then install DeePaC with `pip`. For GPU support, you need to install CUDA and CuDNN manually first (see TensorFlow installation guide for details). Then you can do the same as above: ``` # For GPU support (recommended) pip install tensorflow-gpu pip install deepacvir ``` Alternatively, if you don't need GPU support: ``` # Basic installation (CPU-only) pip install deepacvir ``` ## Usage DeePaC-vir may be used exactly as the base version of DeePaC. To use the plugin, substitute the `deepac` command for `deepac-vir`. Visit <https://gitlab.com/rki_bioinformatics/DeePaC> for a DeePaC readme describing basic usage. For example, you can use the following commands: ``` # See help deepac-vir --help # Run quick tests (eg. on CPUs) deepac-vir test -q # Full tests deepac-vir test -a # Predict using a rapid CNN (trained on VHDB data) deepac-vir predict -r input.fasta # Predict using a sensitive LSTM (trained on VHDB data) deepac-vir predict -s input.fasta ``` More examples are available at <https://gitlab.com/rki_bioinformatics/DeePaC>. ## Supplementary data and scripts Training, validation and test datasets are available here: <https://doi.org/10.5281/zenodo.3630803>. In the main DeePaC repository (<https://gitlab.com/rki_bioinformatics/DeePaC>) you can find the R scripts and data files used in the papers for dataset preprocessing and benchmarking. ## Cite us If you find DeePaC useful, please cite: ``` @article{10.1093/bioinformatics/btz541, author = {Bartoszewicz, Jakub M and Seidel, Anja and Rentzsch, Robert and Renard, Bernhard Y}, title = "{DeePaC: predicting pathogenic potential of novel DNA with reverse-complement neural networks}", journal = {Bioinformatics}, year = {2019}, month = {07}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btz541}, url = {https://doi.org/10.1093/bioinformatics/btz541}, eprint = {http://oup.prod.sis.lan/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btz541/28971344/btz541.pdf}, } @article {Bartoszewicz2020.01.29.925354, author = {Bartoszewicz, Jakub M. and Seidel, Anja and Renard, Bernhard Y.}, title = {Interpretable detection of novel human viruses from genome sequencing data}, elocation-id = {2020.01.29.925354}, year = {2020}, doi = {10.1101/2020.01.29.925354}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/early/2020/02/01/2020.01.29.925354}, eprint = {https://www.biorxiv.org/content/early/2020/02/01/2020.01.29.925354.full.pdf}, journal = {bioRxiv} } ```


نیازمندی

مقدار نام
>=0.11.0 deepac
>=2.1 tensorflow
>=0.22.1 scikit-learn
>=1.17 numpy
>=3.1.3 matplotlib


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl deepacvir-0.2.2:

    pip install deepacvir-0.2.2.whl


نصب پکیج tar.gz deepacvir-0.2.2:

    pip install deepacvir-0.2.2.tar.gz