معرفی شرکت ها


deepaccess-0.1.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package for training and interpreting an ensemble of neural networks for chromatin accessibility
ویژگی مقدار
سیستم عامل -
نام فایل deepaccess-0.1.3
نام deepaccess
نسخه کتابخانه 0.1.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jennifer Hammelman
ایمیل نویسنده jhammelm@mit.edu
آدرس صفحه اصلی https://github.com/gifford-lab/deepaccess-package
آدرس اینترنتی https://pypi.org/project/deepaccess/
مجوز -
# deepaccess-package [![PyPI version](https://badge.fury.io/py/deepaccess.svg)](https://badge.fury.io/py/deepaccess) [![Anaconda-Server Badge](https://anaconda.org/bioconda/deepaccess/badges/installer/conda.svg)](https://conda.anaconda.org/bioconda) This is the code for training and interpretation of an ensemble of convolutional neural networks for multi-task classification. Instructions for downloading and getting started with the current release are available at [https://cgs.csail.mit.edu/deepaccess-package/](https://cgs.csail.mit.edu/deepaccess-package/). deepaccess is available via [pip](https://pypi.org/project/pip/) and [bioconda](https://bioconda.github.io/). The DeepAccess model trained on ATAC-seq data from 10 mouse cell types is available as a [zenodo record](https://zenodo.org/record/4908895#.YL6YpR0pDfY). ## Dependencies * [bedtools](https://bedtools.readthedocs.io/en/latest/) (v2.29.2) To run DeepAccess with regions (bedfile format) you must install bedtools and add it to your path. Bedtools binaries are available [here](https://github.com/arq5x/bedtools2/releases). After installation, you can add bedtools to your path via the terminal or modifying your ~/.bashrc ``` export PATH="/path/to/bedtools:$PATH" ``` ## Installation deepaccess is available on the Python Package Index (PyPI) and can be installed with pip: ``` pip install deepaccess ``` and via bioconda: ``` conda install -c bioconda deepaccess ``` ## Training To train a DeepAccess model for a new task ``` usage: deepaccess train [-h] -l LABELS [LABELS ...] -out OUT [-ref REFFASTA] [-g GENOME] [-beds BEDFILES [BEDFILES ...]] [-fa FASTA] [-fasta_labels FASTA_LABELS] [-f FRAC_RANDOM] [-nepochs NEPOCHS] [-ho HOLDOUT] [-seed SEED] [-verbose] optional arguments: -h, --help show this help message and exit -l LABELS [LABELS ...], --labels LABELS [LABELS ...] -out OUT, --out OUT -ref REFFASTA, --refFasta REFFASTA -g GENOME, --genome GENOME genome chrom.sizes file -beds BEDFILES [BEDFILES ...], --bedfiles BEDFILES [BEDFILES ...] -fa FASTA, --fasta FASTA -fasta_labels FASTA_LABELS, --fasta_labels FASTA_LABELS -f FRAC_RANDOM, --frac_random FRAC_RANDOM -nepochs NEPOCHS, --nepochs NEPOCHS -ho HOLDOUT, --holdout HOLDOUT chromosome to holdout -seed SEED, --seed SEED -verbose, --verbose Print training progress ``` ### Arguments | Argument | Description | Example | | --------- | ----------- | -------- | | -h, --help | show this help message and exit | NA | | -l --labels | list of labels for each bed file | C1 C2 C3 | | -out --out | output folder name | myoutput | | -ref --ref | reference fasta; required with bed input | mm10.fa | | -g --genome | genome chromosome sizes; required with bed input | default/mm10.chrom.sizes | | -beds --bedfiles | list of bed files; one of beds or fa input required | C1.bed C2.bed C3.bed | | -fa --fasta | fasta file; one of beds or fa input required | C1C2C3.fa | | -fasta_labels --fasta_labels | text file containing tab delimited labels (0 or 1) for each fasta line with one column for each class | C1C2C3.txt | | -f --frac_random | for bed file input fraction of random outgroup regions to add to training | 0.1 | | -nepochs --nepochs | number of training iterations | 1 | | -ho --holdout | chromosome name to hold out (only with bed input) | chr19 | | -verbose --verbose | print training and evaluation progress | NA | | -seed --seed | set tensorflow seed | 2021 | ## Interpretation To run interpretation of a DeepAccess model ``` usage: deepaccess interpret [-h] -trainDir TRAINDIR [-fastas FASTAS [FASTAS ...]] [-l LABELS [LABELS ...]] [ -c COMPARISONS [COMPARISONS ...]] [-evalMotifs EVALMOTIFS] [-evalPatterns EVALPATTERNS] [-p POSITION] [-saliency] [-subtract] [-bg BACKGROUND] [-vis] optional arguments: -h, --help show this help message and exit -trainDir TRAINDIR, --trainDir TRAINDIR -fastas FASTAS [FASTAS ...], --fastas FASTAS [FASTAS ...] -l LABELS [LABELS ...], --labels LABELS [LABELS ...] -c COMPARISONS [COMPARISONS ...], --comparisons COMPARISONS [COMPARISONS ...] -evalMotifs EVALMOTIFS, --evalMotifs EVALMOTIFS -evalPatterns EVALPATTERNS, --evalPatterns EVALPATTERNS -p POSITION, --position POSITION -saliency, --saliency -subtract, --subtract -bg BACKGROUND, --background BACKGROUND -vis, --makeVis ``` ### Arguments | Argument | Description | Example | | --------- | ----------- | -------- | | -h, --help | show this help message and exit | NA | | -trainDir --trainDir | directory containing trained DeepAccess model | test/ASCL1vsCTCF | | -fastas --fastas | list of fasta files to evaulate | test/ASCL1vsCTCF/test.fa | | -l --labels | list of labels for each bed file | C1 C2 C3 | | -c --comparisons | list of comparisons between different labels | ASCL1vsCTCF ASCL1vsNone runs differential EPE between ASCL1 and CTCF and EPE on ASCL1; C1,C2vsC3 runs differential EPE for (C1 and C2) vs C3 | | -evalMotifs --evalMotifs | PWM or PCM data base of DNA sequence motifs | default/HMv11_MOUSE.txt | | -evalPatterns --evalPatterns | fasta file containing DNA sequence patterns | data/ASCL1_space.fa | | -bg --bg | fasta file containning background sequences | default/backgrounds.fa | | -saliency --saliency | calculate per base nucleotide importance | NA | | -subtract --subtract | use subtraction instead of ratio for EPE / DEPE | False | | -vis --makeVis | to be used with saliency to make plot visualizing results | NA |


نیازمندی

مقدار نام
>=2.4 tensorflow
>=2.4.3 keras
>=1.6.2 scipy
>=3.3.3 matplotlib
>=1.19.0 numpy
>=0.24.1 scikit-learn


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl deepaccess-0.1.3:

    pip install deepaccess-0.1.3.whl


نصب پکیج tar.gz deepaccess-0.1.3:

    pip install deepaccess-0.1.3.tar.gz