معرفی شرکت ها


deepac-0.9.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Predicting pathogenic potentials of novel DNA with reverse-complement neural networks.
ویژگی مقدار
سیستم عامل -
نام فایل deepac-0.9.3
نام deepac
نسخه کتابخانه 0.9.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jakub Bartoszewicz
ایمیل نویسنده jakub.bartoszewicz@hpi.de
آدرس صفحه اصلی https://gitlab.com/dacs-hpi/deepac
آدرس اینترنتی https://pypi.org/project/deepac/
مجوز MIT
<!-- {#mainpage} --> # DeePaC DeePaC is a python package and a CLI tool for predicting labels (e.g. pathogenic potentials) from short DNA sequences (e.g. Illumina reads) with interpretable reverse-complement neural networks. For details, see our preprint on bioRxiv: <https://www.biorxiv.org/content/10.1101/535286v3> and the paper in *Bioinformatics*: <https://doi.org/10.1093/bioinformatics/btz541>. For details regarding the interpretability functionalities of DeePaC, see the preprint here: <https://www.biorxiv.org/content/10.1101/2020.01.29.925354v2> Documentation can be found here: <https://rki_bioinformatics.gitlab.io/DeePaC/>. See also the main repo here: <https://gitlab.com/rki_bioinformatics/DeePaC>. ## Plug-ins ### DeePaC-strain Basic version of DeePaC comes with built-in models trained to predict pathogenic potentials of NGS reads originating from novel *bacteral species*. If you want to predict pathogenicity of novel *strains* of *known* species, try the DeePaC-strain plugin available here: <https://gitlab.com/dacs-hpi/DeePaC-strain>. ### DeePaC-vir If you want to detect novel human viruses, try the DeePaC-vir plugin: <https://gitlab.com/dacs-hpi/DeePaC-vir>. ### DeePaC-Live If you want to run the predictions in real-time during an Illumina sequencing run, try DeePaC-Live: <https://gitlab.com/dacs-hpi/deepac-live>. ## Installation We recommend using Bioconda (based on the `conda` package manager) or custom Docker images based on official Tensorflow images. Alternatively, a `pip` installation is possible as well. For installation on IBM Power Systems (e.g. AC992), see separate [installation instructions (experimental)](https://gitlab.com/rki_bioinformatics/DeePaC/-/blob/master/dockerfiles/ppc64le/README.md). ### With Bioconda (recommended) [![install with bioconda](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io/recipes/deepac/README.html) You can install DeePaC with `bioconda`. Set up the [bioconda channel]( <https://bioconda.github.io/user/install.html#set-up-channels>) first (channel ordering is important): ``` conda config --add channels defaults conda config --add channels bioconda conda config --add channels conda-forge ``` We recommend setting up an isolated `conda` environment: ``` # python 3.7-3.9 are supported conda create -n my_env python=3.9 conda activate my_env ``` and then: ``` # For GPU support (recommended) - install tensorflow-gpu from the defaults channel conda install -c defaults tensorflow-gpu conda install deepac # Or: basic installation (CPU-only) conda install deepac ``` Optional: download and compile the latest deepac-live custom models [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4456008.svg)](https://doi.org/10.5281/zenodo.4456008): ``` deepac getmodels --fetch ``` If you want to install the plugins as well, use: ``` conda install deepacvir deepacstrain ``` ### With Docker (also recommended) Requirements: * install [Docker](https://docs.docker.com/get-docker/) on your host machine. * For GPU support, you have to install the [NVIDIA Docker support](https://github.com/NVIDIA/nvidia-docker) as well. See [TF Docker installation guide](https://www.tensorflow.org/install/docker) and the [NVIDIA Docker support installation guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker) for details. The guide below assumes you have Docker 19.03 or above. You can then pull the desired image: ``` # Basic installation - CPU only docker pull dacshpi/deepac:0.13.5 # For GPU support docker pull dacshpi/deepac:0.13.5-gpu ``` And run it: ``` # Basic installation - CPU only docker run -v $(pwd):/deepac -u $(id -u):$(id -g) --rm dacshpi/deepac:0.13.5 deepac --help docker run -v $(pwd):/deepac -u $(id -u):$(id -g) --rm dacshpi/deepac:0.13.5 deepac test -q # With GPU support docker run -v $(pwd):/deepac -u $(id -u):$(id -g) --rm --gpus all dacshpi/deepac:0.13.5-gpu deepac test # If you want to use the shell inside the container docker run -it -v $(pwd):/deepac -u $(id -u):$(id -g) --rm --gpus all dacshpi/deepac:0.13.5-gpu bash ``` The image ships the main `deepac` package along with the `deepac-vir` and `deepac-strain` plugins. See the basic usage guide below for more deepac commands. Optional: download and compile the latest deepac-live custom models [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4456008.svg)](https://doi.org/10.5281/zenodo.4456008): ``` docker run -v $(pwd):/deepac -u $(id -u):$(id -g) --rm --gpus all dacshpi/deepac:0.13.5 deepac --fetch ``` For more information about the usage of the NVIDIA container toolkit (e.g. selecting the GPUs to use), consult the [User Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/user-guide.html#user-guide). The `dacshpi/deepac:latest` corresponds to the latest version of the CPU build. We recommend using explicit version tags instead. ### With pip We recommend setting up an isolated `conda` environment (see above). Alternatively, you can use a `virtualenv` virtual environment (note that deepac requires python 3): ``` # use -p to use the desired python interpreter (python 3.6 or higher required) virtualenv -p /usr/bin/python3 my_env source my_env/bin/activate ``` You can then install DeePaC with `pip`. For GPU support, you need to install CUDA and CuDNN manually first (see TensorFlow installation guide for details). Then you can do the same as above: ``` pip install deepac ``` Optional: download and compile the latest deepac-live custom models [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4456008.svg)](https://doi.org/10.5281/zenodo.4456008): ``` deepac getmodels --fetch ``` If you want to install the plugins, use: ``` pip install deepacvir deepacstrain ``` ### Optional: run tests Optionally, you can run explicit tests of your installation. Note that it may take some time on a CPU. ``` # Run standard tests deepac test # Run quick tests (eg. on CPUs) deepac test -q # Test using specific GPUs (here: /device:GPU:0 and /device:GPU:1) deepac test -g 0 1 # Test explainability and gwpa workflows deepac test -xp # Full tests deepac test -a # Full quick tests (eg. on GPUs with limited memory) deepac test -aq ``` ### Help To see help, just use ``` deepac --help deepac predict --help deepac train --help # Etc. ``` ## Basic use: prediction You can predict pathogenic potentials with one of the built-in models out of the box: ``` # A rapid CNN (trained on IMG/M data) deepac predict -r input.fasta # A sensitive LSTM (trained on IMG/M data) deepac predict -s input.fasta ``` The rapid and the sensitive models are trained to predict pathogenic potentials of novel bacterial species. For details, see <https://doi.org/10.1093/bioinformatics/btz541> or <https://www.biorxiv.org/content/10.1101/535286v3>. To quickly filter your data according to predicted pathogenic potentials, you can use: ``` deepac predict -r input.fasta deepac filter input.fasta input_predictions.npy -t 0.5 ``` Note that after running `predict`, you can use the `input_predictions.npy` to filter your fasta file with different thresholds. You can also add pathogenic potentials to the fasta headers in the output files: ``` deepac filter input.fasta input_predictions.npy -t 0.75 -p -o output-75.fasta deepac filter input.fasta input_predictions.npy -t 0.9 -p -o output-90.fasta ``` ## Advanced use ### Config templates To get the config templates in the current working directory, simply use: ``` deepac templates ``` ### Preprocessing For more complex analyzes, it can be useful to preprocess the fasta files by converting them to binary numpy arrays. Use: ``` deepac preproc preproc_config.ini ``` See the `config_templates` directory of the GitLab repository (https://gitlab.com/rki_bioinformatics/DeePaC/) for a sample configuration file. ### Training You can use the built-in architectures to train a new model: ``` deepac train -r -T train_data.npy -t train_labels.npy -V val_data.npy -v val_labels.npy deepac train -s -T train_data.npy -t train_labels.npy -V val_data.npy -v val_labels.npy ``` To train a new model based on you custom configuration, use ``` deepac train -c nn_train_config.ini ``` If you train an LSTM on a GPU, a CUDNNLSTM implementation will be used. To convert the resulting model to be CPU-compatible, use `deepac convert`. You can also use it to save the weights of a model, or recompile a model from a set of weights: ``` # Save model weights and convert the model to an equivalent with the same architecture and weights. # Other config parameters can be adjusted deepac convert model_config.ini saved_model.h5 # Recompile the model deepac convert saved_model_config.ini saved_model_weights.h5 -w ``` ### Evaluation To evaluate a trained model, use ``` # Read-by-read performance deepac eval -r eval_config.ini # Species-by-species performance deepac eval -s eval_species_config.ini # Ensemble performance deepac eval -e eval_ens_config.ini ``` See the configs directory for sample configuration files. Note that `deepac eval -s` requires precomputed predictions and a csv file with a number of DNA reads for each species in each of the classes. ### TPU (experimental) If you want to use a TPU, run DeePaC with the `--tpu` parameter: ``` # Test a TPU deepac --tpu colab test ``` ## Intepretability workflows ### Filter visualization To find the most relevant filters and visualize them, use the following minimum workflow: ``` # Calculate filter and nucleotide contibutions (partial Shapley values) for the first convolutional layer # using mean-centered weight matrices and "easy" calculation mode deepac explain fcontribs -m model.h5 -eb -t test_data.npy -N test_nonpatho.fasta -P test_patho.fasta -o fcontribs # Create filter ranking deepac explain franking -f fcontribs/filter_scores -y test_labels.npy -p test_predictions.npy -o franking # Prepare transfac files for filter visualization (weighted by filter contribution) deepac explain fa2transfac -i fcontribs/fasta -o fcontribs/transfac -w -W fcontribs/filter_scores # Visualize nucleotide contribution sequence logos deepac explain xlogos -i fcontribs/fasta -s fcontribs/nuc_scores -I fcontribs/transfac -t train_data.npy -o xlogos ``` You can browse through other supplementary functionalities and parameters by checking the help: ``` deepac explain -h deepac explain fcontribs -h deepac explain xlogos -h # etc. ``` ### Genome-wide phenotype potential analysis (GWPA) To find interesting regions of a whole genome, use this workflow to generate nucleotide-resolution maps of predicted phenotype potentials and nucleotide contributions: ``` # Fragment the genomes into pseudoreads deepac gwpa fragment -g genomes_fasta -o fragmented_genomes # Predict the pathogenic potential of each pseudoread deepac predict -r -a fragmented_genomes/sample1_fragmented_genomes.npy -o predictions/sample1_pred.npy # Create bedgraphs of mean pathogenic potential at each position of the genome # Can be visualized in IGV deepac gwpa genomemap -f fragmented_genomes -p predictions -g genomes_genome -o bedgraph # Rank genes by mean pathogenic potential deepac gwpa granking -p bedgraph -g genomes_gff -o granking # Create bedgraphs of mean nuclotide contribution at each position of the genome # Can be visualized in IGV deepac gwpa ntcontribs -m model.h5 -f fragmented_genomes -g genomes_genome -o bedgraph_nt ``` You can browse through other supplementary functionalities and parameters by checking the help: ``` deepac gwpa -h deepac gwpa genomemap -h deepac gwpa ntcontribs -h # etc. ``` ### Filter enrichment analysis Finally, you can check for filter enrichment in annotated genes or other genomic features: ``` # Get filter activations, genome-wide deepac gwpa factiv -m model.h5 -t fragmented_genomes/sample1_fragmented_genomes.npy -f fragmented_genomes/sample1_fragmented_genomes.fasta -o factiv # Check for enrichment within annotated genomic features deepac gwpa fenrichment -i factiv -g genomes_gff/sample1.gff -o fenrichment ``` ## Supplementary data and scripts Datasets are available here: [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3678563.svg)](https://doi.org/10.5281/zenodo.3678563) (bacteria) and here: [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4312525.svg)](https://doi.org/10.5281/zenodo.4312525) (viruses). In the supplement_paper directory you can find the R scripts and data files used in the papers for dataset preprocessing and benchmarking. ## Erratum The second sentence in section 2.2.3 of the bacterial DeePaC paper (<https://doi.org/10.1093/bioinformatics/btz541>) is partially incomplete. Published text: “All were initialized with He weight initialization (He et al, 2015) and trained…” Should be: “All were initialized with He weight initialization (He et al, 2015) or Glorot initialization (Glorot & Bengio, 2010) for recurrent and feedforward layers respectively and trained… ## Known issues Unfortunately, the following issues are independent of the DeePaC codebase: * pip installation of pybedtools (a deepac dependency) requires libz-dev and will fail if it is not present on your system. To solve this, install libz-dev or use the bioconda installation. * A bug in TF 2.2 may cause training to hang when using Keras Sequence input (i.e. if your training config contains `Use_TFData = False` and `LoadTrainingByBatch = True`). To solve this, use TF 2.1 or TF 2.3+, pre-load your data into memory (`LoadTrainingByBatch = False`) or use TFDataset input (`Use_TFData = True`). * A bug in TF 2.1 resets the optimizer state when continuing interrupted training. DeePaC will notice that and warn you, but to solve this, upgrade to TF 2.2+. * h5py>=3.0 is not compatible with Tensorflow at the moment and will cause errors when loading Keras (and DeePaC) models (hence, deepac tests will fail as well). Conda installation takes care of it automatically, but the pip Tensorflow installation does not. To solve it, use conda installation or install h5py<3.0. This issue should be resolved in a future version of Tensorflow. * shap 0.38 requires IPython but the pip installer does not install it. Manual installation solves the problem. ## Cite us If you find DeePaC useful, please cite: ``` @article{10.1093/bioinformatics/btz541, author = {Bartoszewicz, Jakub M and Seidel, Anja and Rentzsch, Robert and Renard, Bernhard Y}, title = "{DeePaC: predicting pathogenic potential of novel DNA with reverse-complement neural networks}", journal = {Bioinformatics}, volume = {36}, number = {1}, pages = {81-89}, year = {2020}, month = {01}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btz541}, url = {https://doi.org/10.1093/bioinformatics/btz541}, eprint = {https://academic.oup.com/bioinformatics/article-pdf/36/1/81/31813920/btz541.pdf}, } @article{10.1093/nargab/lqab004, author = {Bartoszewicz, Jakub M and Seidel, Anja and Renard, Bernhard Y}, title = "{Interpretable detection of novel human viruses from genome sequencing data}", journal = {NAR Genomics and Bioinformatics}, volume = {3}, number = {1}, year = {2021}, month = {02}, issn = {2631-9268}, doi = {10.1093/nargab/lqab004}, url = {https://doi.org/10.1093/nargab/lqab004}, note = {lqab004}, eprint = {https://academic.oup.com/nargab/article-pdf/3/1/lqab004/36165658/lqab004.pdf}, } @article{10.1093/bib/bbab269, author = {Bartoszewicz, Jakub M and Genske, Ulrich and Renard, Bernhard Y}, title = "{Deep learning-based real-time detection of novel pathogens during sequencing}", journal = {Briefings in Bioinformatics}, volume = {22}, number = {6}, year = {2021}, month = {07}, issn = {1477-4054}, doi = {10.1093/bib/bbab269}, url = {https://doi.org/10.1093/bib/bbab269}, note = {bbab269}, eprint = {https://academic.oup.com/bib/article-pdf/22/6/bbab269/41088711/bbab269.pdf}, } @article{10.1101/2021.11.30.470625, author = {Bartoszewicz, Jakub M and Nasri, Ferdous and Nowicka, Melania and Renard, Bernhard Y}, title = {Pathogenic potential prediction for novel fungal DNA based on a curated fungi-hosts data collection}, year = {2021}, doi = {10.1101/2021.11.30.470625}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/early/2021/12/01/2021.11.30.470625}, eprint = {https://www.biorxiv.org/content/early/2021/12/01/2021.11.30.470625.full.pdf}, journal = {bioRxiv} } ```


نیازمندی

مقدار نام
>=2.1.2 tensorflow
>=1.78 biopython
>=0.22.1 scikit-learn
>=3.1.3 matplotlib
>=1.17 numpy
>=2.10 h5py
>=5.6.7 psutil
>=3.2 wget
>=2.24 requests
>=0.35 shap
>=3.7 weblogo
>=0.8.1 pybedtools
>=0.11.0 statsmodels
>=0.11 seaborn
>=1.1.0 termcolor
>=4.49 tqdm


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl deepac-0.9.3:

    pip install deepac-0.9.3.whl


نصب پکیج tar.gz deepac-0.9.3:

    pip install deepac-0.9.3.tar.gz