معرفی شرکت ها


deepCR-0.2.1rc0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل -
نام فایل deepCR-0.2.1rc0
نام deepCR
نسخه کتابخانه 0.2.1rc0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Keming Zhang
ایمیل نویسنده kemingz@berkeley.edu
آدرس صفحه اصلی http://pypi.python.org/pypi/deepCR/
آدرس اینترنتی https://pypi.org/project/deepCR/
مجوز BSD 3-Clause
[![Build Status](https://travis-ci.com/profjsb/deepCR.svg?token=baKtC9yCzzwzzqM9ihAX&branch=master)](https://travis-ci.com/profjsb/deepCR) [![codecov](https://codecov.io/gh/profjsb/deepCR/branch/master/graph/badge.svg?token=SIwJFmKJqr)](https://codecov.io/gh/profjsb/deepCR) [![Documentation Status](https://readthedocs.org/projects/deepcr/badge/?version=latest)](https://deepcr.readthedocs.io/en/latest/?badge=latest) ## deepCR: Deep Learning Based Cosmic Ray Removal for Astronomical Images Identify and remove cosmic rays from astronomical images using trained convolutional neural networks. Documentation and tutorials: https://deepcr.readthedocs.io/ This is the installable package which implements the methods described in the paper: Zhang & Bloom (2019), submitted. Code to reproduce benchmarking results in the paper is at: https://github.com/kmzzhang/deepCR-paper If you use this package, please cite Zhang & Bloom (2019): https://arxiv.org/abs/1907.09500 and consider including a link to this repository. Note: the current release includes only model for HST ACS/WFC. <img src="https://raw.githubusercontent.com/profjsb/deepCR/master/imgs/postage-sm.jpg" wdith="90%"> ### Installation ```bash pip install deepCR ``` Or you can install from source: ```bash git clone https://github.com/profjsb/deepCR.git cd deepCR/ python setup.py install ``` ### Quick Start Quick download of a HST ACS/WFC image ```bash wget -O jdba2sooq_flc.fits https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/jdba2sooq_flc.fits ``` With Python >=3.5: For smaller sized images ```python from deepCR import deepCR from astropy.io import fits image = fits.getdata("jdba2sooq_flc.fits")[:512,:512] # create an instance of deepCR with specified model configuration mdl = deepCR(mask="ACS-WFC-F606W-2-32", inpaint="ACS-WFC-F606W-2-32", device="CPU") # apply to input image mask, cleaned_image = mdl.clean(image, threshold = 0.5) # best threshold is highest value that generate mask covering full extent of CR # choose threshold by visualizing outputs. # note that deepCR-inpaint would overestimate if mask does not fully cover CR. # if you only need CR mask you may skip image inpainting for shorter runtime mask = mdl.clean(image, threshold = 0.5, inpaint=False) # if you want probabilistic cosmic ray mask instead of binary mask prob_mask = mdl.clean(image, binary=False) ``` For WFC full size images (4k * 2k), you should specify **segment = True** to tell deepCR to segment the input image into 256*256 patches, and process one patch at a time. Otherwise this would take up > 10gb memory. We recommended you use segment = True for images larger than 1k * 1k on CPU. GPU memory limits may be more strict. ```python image = fits.getdata("jdba2sooq_flc.fits") mask, cleaned_image = mdl.clean(image, threshold = 0.5, segment = True) ``` (CPU only) In place of **segment = True**, you can also specify **parallel = True** and invoke the multi-threaded version of segment mode. This will speed things up. You don't have to specify segment = True again. ```python image = fits.getdata("jdba2sooq_flc.fits") mask, cleaned_image = mdl.clean(image, threshold = 0.5, parallel = True, n_jobs=-1) ``` **n_jobs=-1** makes use of all your CPU cores. Note that this won't speed things up if you're using GPU! ### Currently available models mask: ACS-WFC-F606W-2-4 ACS-WFC-F606W-2-32(*) inpaint: ACS-WFC-F606W-2-32(*) ACS-WFC-F606W-3-32 Recommended models are marked in (*). Larger number indicate larger capacity. Input images should come from *_flc.fits* files which are in units of electrons. ### Limitations and Caveats The currently included models are trained and benchmarked on HST ACS/WFC images in the F606W filter. Visual inspection shows that these models also work well on filters from F435W to F814W. However, users should use a higher threshold (e.g. 0.9) for short wavelength filters to minimize false detections, if any. ### Contributing We are very interested in getting bug fixes, new functionality, and new trained models from the community (especially for ground-based imaging and spectroscopy). Please fork this repo and issue a PR with your changes. It will be especially helpful if you add some tests for your changes.


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl deepCR-0.2.1rc0:

    pip install deepCR-0.2.1rc0.whl


نصب پکیج tar.gz deepCR-0.2.1rc0:

    pip install deepCR-0.2.1rc0.tar.gz